Ssylka

Может ли машинное обучение раскрыть скрытые тайны окисления палладия?

Исследование, использующее машинное обучение для анализа окисления поверхности палладия, выявило ранее неизвестные сложности в динамике атомных и молекулярных процессов. Метод позволяет значительно углубить понимание поведения катализаторов.
Может ли машинное обучение раскрыть скрытые тайны окисления палладия?
Изображение носит иллюстративный характер

Специально разработанный Automatic Process Explorer (APE) создан теоретическим отделом Института Фрица Хабера с целью устранения предвзятости, характерной для традиционных симуляций методом кинетического Монте-Карло (kMC). APE динамически обновляет список процессов на основе текущего состояния системы и использует нечеткую машинно-обученную классификацию для выделения уникальных атомных окружений.

Традиционные kMC симуляции, широко применяемые для изучения длительной эволюции атомных процессов, зависят от заранее заданных входных параметров, что ограничивает возможность обнаружения сложных движений атомов в условиях изменяющихся внешних факторов.

Интеграция APE с машинно-обученными межатомными потенциалами (MLIPs) обеспечивает повышенную точность симуляций, что особенно важно при моделировании начальной стадии окисления палладиевых поверхностей. Подобное сочетание методов открывает новые возможности для изучения процессов на атомном уровне.

Механизм окисления палладия имеет большое практическое значение, поскольку палладий используется в катализаторах автомобильных систем по контролю выбросов, обеспечивая снижение загрязнения окружающей среды. Применение инновационной методики позволяет оптимизировать работу таких устройств.

APE выявил порядка 3000 различных процессов, включающих сложные атомные перемещения и переструктурирование поверхности. Эти процессы протекают в временных масштабах, сопоставимых с молекулярными реакциями в каталитических системах, что ранее оставалось незамеченным при использовании традиционных методов.

Выявленные закономерности способствуют лучшему пониманию эволюции наноструктур и роли атомных движений в повышении эффективности катализаторов. Результаты исследования имеют прямое отношение к совершенствованию технологий в области энергетики, а также к разработке экологически чистых производственных процессов.

Публикация результатов в журнале Physical Review Letters подчеркивает высокую научную значимость представленной методологии и ее потенциал для применения в исследованиях различных каталитических систем и разработки более устойчивых технологических решений.


Новое на сайте

18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на... 18575Почему космический мусор стал реальной угрозой для пилотируемых миссий? 18574Зеленый свидетель: как мох помогает раскрывать преступления 18573Инфраструктурная гонка ИИ: Anthropic инвестирует $50 миллиардов для Claude 18572Кровь активных мышей омолодила мозг ленивых сородичей