Как нейтринный телескоп в Средиземном море обнаружил самую энергичную частицу-призрак?

Детектор нейтрино, погруженный в воды Средиземного моря, зафиксировал самую энергичную «частицу-призрак» из когда-либо обнаруженных. Новый нейтрино превосходит по энергии предыдущий рекорд в 30 раз. Учёные полагают, что частица прибыла из-за пределов Млечного Пути, хотя точный источник пока установить не удалось.
Как нейтринный телескоп в Средиземном море обнаружил самую энергичную частицу-призрак?
Изображение носит иллюстративный характер

Нейтрино, известные как «частицы-призраки», испускаются звёздами, включая наше Солнце. Каждую секунду триллионы этих частиц проходят сквозь человеческое тело. Их называют призраками из-за чрезвычайно малой массы, делающей их обнаружение крайне сложным. Учёные не могут зафиксировать нейтрино напрямую – вместо этого они наблюдают за взаимодействиями, происходящими при столкновении нейтрино с материей.

Два года назад произошло знаменательное событие: нейтрино столкнулся с материей, породив крошечную частицу – мюон. Когда мюон прошёл через подводный детектор, он создал вспышки голубого света. Измерив эти вспышки, исследователи смогли вычислить энергию исходного нейтрино. Результаты исследования были опубликованы в журнале Nature.

Соавтор исследования Аарт Хейбур из Национального института субатомной физики (Nikhef) в Нидерландах отмечает: «Это часть попытки понять процессы с самой высокой энергией во Вселенной». Физик Денвер Уиттингтон из Сиракузского университета, не участвовавший в исследовании, добавляет: «Это знак того, что мы на правильном пути, и намёк на возможные сюрпризы».

Детектор, совершивший открытие, является частью строящейся глубоководной нейтринной обсерватории. Подобные детекторы часто размещают под водой, льдом или глубоко под землёй, чтобы защитить их от поверхностного излучения.

Мэри Бишай из Брукхейвенской национальной лаборатории предостерегает: «Это всего одно событие. Нам нужно увидеть, что наблюдают другие телескопы». Тем не менее, обнаружение столь энергичного нейтрино на раннем этапе работы детектора предполагает, что высокоэнергетических нейтрино может быть больше, чем изначально предполагали учёные.

Для точного определения источника этого уникального нейтрино необходимы дополнительные данные и наблюдения с помощью других телескопов. Это открытие может стать ключом к пониманию самых мощных процессов во Вселенной.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка