Ssylka

Как появляется молекула, создавшая Вселенную?

Исследователи из Мичиганского государственного университета совершили прорыв в понимании образования триводорода (H3+) – молекулы, которую часто называют «создательницей Вселенной». Новое исследование, опубликованное в Nature Communications, раскрывает неизвестные ранее пути формирования этого важнейшего космического соединения.
Как появляется молекула, создавшая Вселенную?
Изображение носит иллюстративный характер

H3+ играет фундаментальную роль в космической химии, катализируя межзвездные реакции и участвуя в рождении звезд. Эта молекула широко распространена в газовых гигантах Солнечной системы, таких как Юпитер и Сатурн. До недавнего времени считалось, что основной путь её образования – столкновение молекулы водорода (H2) с её ионизированной формой (H2+).

Группа ученых под руководством Пиотра Печуха и Маркоса Дантуса обнаружила альтернативный механизм формирования H3+ в соединениях, известных как метилгалогены и псевдогалогены. Исследование объединило экспериментальные методы ультрабыстрой лазерной спектроскопии и передовые вычисления в области химии.

Ключевым открытием стал механизм «блуждания» в дважды ионизированных молекулах. При двойной ионизации, когда молекула теряет два электрона под воздействием космических лучей или лазера, нейтральный водород (H2) отделяется, «блуждает» вокруг молекулы и захватывает дополнительный протон, образуя H3+.

Исследовательская группа установила четкие закономерности, определяющие, в каких именно соединениях может образовываться H3+. Эти правила можно применить для прогнозирования формирования триводорода в различных органических соединениях как в лабораторных условиях, так и в межзвездном пространстве.

"H3+ имеет решающее значение для астрохимии, от рождения звезд до образования многих органических молекул», – отмечает Маркос Дантус. По словам Пиотра Печуха, даже если новый механизм обеспечивает лишь несколько процентов дополнительных молекул H3+ во Вселенной, это может потребовать пересмотра существующих моделей звездообразования.

Открытие новых путей формирования H3+ может существенно повлиять на наше понимание космической химии. Хотя классический путь образования через столкновение H2 и H2+ остается доминирующим, вклад дважды ионизированных органических соединений в диффузных молекулярных облаках может оказаться значимым для точного моделирования астрофизических процессов.


Новое на сайте

15287Жидкость, восстанавливающая форму: нарушение законов термодинамики 15286Аркадия ведьм: загадка Чарльза годфри Леланда и её влияние на современную магию 15285Кто станет новым героем Звёздных войн в 2027 году? 15283Ануше Ансари | Почему космические исследования важны для Земли 15282Гизем Гумбуская | Синтетический морфогенез: самоконструирующиеся живые архитектуры по... 15281Как предпринимателю остаться хозяином своей судьбы? 15280Люси: путешествие к древним обломкам солнечной системы 15279Роберт Лиллис: извлеченные уроки для экономически эффективных исследований дальнего... 15278Почему супермен до сих пор остаётся символом надежды и морали? 15277Райан Гослинг в роли нового героя «Звёздных войн»: что известно о фильме Star Wars:... 15276Почему экваториальная Гвинея остаётся одной из самых закрытых и жестоких диктатур мира? 15275Почему морские слизни становятся ярче под солнцем? 15274Глен Вейль | Можем ли мы использовать ИИ для построения более справедливого общества? 15273Лириды: где и как увидеть древний звездопад в этом апреле? 15272Сдержит ли налог на однодневных туристов в Венеции наплыв гостей?