Ssylka

Как появляется молекула, создавшая Вселенную?

Исследователи из Мичиганского государственного университета совершили прорыв в понимании образования триводорода (H3+) – молекулы, которую часто называют «создательницей Вселенной». Новое исследование, опубликованное в Nature Communications, раскрывает неизвестные ранее пути формирования этого важнейшего космического соединения.
Как появляется молекула, создавшая Вселенную?
Изображение носит иллюстративный характер

H3+ играет фундаментальную роль в космической химии, катализируя межзвездные реакции и участвуя в рождении звезд. Эта молекула широко распространена в газовых гигантах Солнечной системы, таких как Юпитер и Сатурн. До недавнего времени считалось, что основной путь её образования – столкновение молекулы водорода (H2) с её ионизированной формой (H2+).

Группа ученых под руководством Пиотра Печуха и Маркоса Дантуса обнаружила альтернативный механизм формирования H3+ в соединениях, известных как метилгалогены и псевдогалогены. Исследование объединило экспериментальные методы ультрабыстрой лазерной спектроскопии и передовые вычисления в области химии.

Ключевым открытием стал механизм «блуждания» в дважды ионизированных молекулах. При двойной ионизации, когда молекула теряет два электрона под воздействием космических лучей или лазера, нейтральный водород (H2) отделяется, «блуждает» вокруг молекулы и захватывает дополнительный протон, образуя H3+.

Исследовательская группа установила четкие закономерности, определяющие, в каких именно соединениях может образовываться H3+. Эти правила можно применить для прогнозирования формирования триводорода в различных органических соединениях как в лабораторных условиях, так и в межзвездном пространстве.

"H3+ имеет решающее значение для астрохимии, от рождения звезд до образования многих органических молекул», – отмечает Маркос Дантус. По словам Пиотра Печуха, даже если новый механизм обеспечивает лишь несколько процентов дополнительных молекул H3+ во Вселенной, это может потребовать пересмотра существующих моделей звездообразования.

Открытие новых путей формирования H3+ может существенно повлиять на наше понимание космической химии. Хотя классический путь образования через столкновение H2 и H2+ остается доминирующим, вклад дважды ионизированных органических соединений в диффузных молекулярных облаках может оказаться значимым для точного моделирования астрофизических процессов.


Новое на сайте

17904Символы власти вестготских женщин: орлиные броши из Аловеры 17903Как одна строка кода вскрыла уязвимость целой экосистемы? 17902Lufthansa заменит 4000 административных сотрудников искусственным интеллектом 17901Каков истинный срок годности генетической информации? 17900Сможет ли закон догнать искусственный интеллект, предлагающий психотерапию? 17899Цепная реакция заражения листерией из-за одного поставщика 17898Холодный расчет: как современная наука изменила правила стирки 17897Деревянная начинка: массовый отзыв корн-догов из-за угрозы травм 17896Случайное открытие, спасшее 500 миллионов жизней 17895Мастерство мобильной съемки: полное руководство по камере iPhone 17894Что мог рассказать личный набор инструментов охотника эпохи палеолита? 17893Почему крупнейшая звездная колыбель млечного пути производит непропорционально много... 17892Обречены ли мы есть инжир с мертвыми осами внутри? 17891Почему AI-помощникам выгодно лгать, а не признавать незнание? 17890Является ли творчество искусственного интеллекта предсказуемым недостатком?