Группа исследователей из Института Фрица Габера Общества Макса Планка и Центра Гельмгольца Дрезден-Россендорф совершила прорыв в области измерения электрических полей света. Результаты их работы, опубликованные в журнале "Light: Science & Applications", демонстрируют новый метод высокоточного измерения световых волн в терагерцовом диапазоне.

Ключевым достижением стала разработка экспериментальной платформы, использующей электрооптические резонаторы Фабри-Перо (EOCs). Эта технология позволяет измерять электрические поля света, захваченного между зеркалами, с беспрецедентной точностью на субцикловом уровне.
Исследователи создали инновационную гибридную конструкцию резонатора, включающую настраиваемый воздушный зазор и расщепленный детекторный кристалл. Такая конфигурация обеспечивает точный контроль над внутренними отражениями и позволяет создавать селективные интерференционные картины по требованию.
Особое внимание в исследовании уделено терагерцовому спектральному диапазону, который имеет fundamental значение для изучения свойств материалов. Низкоэнергетические возбуждения в этом диапазоне определяют ключевые характеристики веществ и открывают путь к наблюдению новых состояний, объединяющих свойства света и материи.
Майкл С. Спенсер, первый автор исследования, отмечает: «Наша работа открывает новые возможности для изучения и управления фундаментальными взаимодействиями между светом и материей, предоставляя уникальный инструментарий для будущих научных открытий».
Профессор Себастьян Мэрляйн, руководитель исследовательской группы, подчеркивает: «Наши электрооптические резонаторы обеспечивают высокоточное представление поля, открывая новые пути для квантовой электродинамики в эксперименте и теории».
Разработанная технология имеет широкие перспективы применения в квантовых вычислениях, материаловедении и фундаментальной физике. Возможность управления интерференционными картинами в реальном времени создает основу для манипулирования свойствами материалов и углубленного изучения взаимодействий света с веществом в области квантовой электродинамики.
Гибридная конструкция резонатора позволила исследователям измерить и смоделировать набор допустимых мод внутри полости, обеспечивая возможность переключения между узлами и максимумами световых волн в точках интереса. Математические модели подтверждают экспериментальные наблюдения, расшифровывая сложную дисперсию в резонаторе.

Изображение носит иллюстративный характер
Ключевым достижением стала разработка экспериментальной платформы, использующей электрооптические резонаторы Фабри-Перо (EOCs). Эта технология позволяет измерять электрические поля света, захваченного между зеркалами, с беспрецедентной точностью на субцикловом уровне.
Исследователи создали инновационную гибридную конструкцию резонатора, включающую настраиваемый воздушный зазор и расщепленный детекторный кристалл. Такая конфигурация обеспечивает точный контроль над внутренними отражениями и позволяет создавать селективные интерференционные картины по требованию.
Особое внимание в исследовании уделено терагерцовому спектральному диапазону, который имеет fundamental значение для изучения свойств материалов. Низкоэнергетические возбуждения в этом диапазоне определяют ключевые характеристики веществ и открывают путь к наблюдению новых состояний, объединяющих свойства света и материи.
Майкл С. Спенсер, первый автор исследования, отмечает: «Наша работа открывает новые возможности для изучения и управления фундаментальными взаимодействиями между светом и материей, предоставляя уникальный инструментарий для будущих научных открытий».
Профессор Себастьян Мэрляйн, руководитель исследовательской группы, подчеркивает: «Наши электрооптические резонаторы обеспечивают высокоточное представление поля, открывая новые пути для квантовой электродинамики в эксперименте и теории».
Разработанная технология имеет широкие перспективы применения в квантовых вычислениях, материаловедении и фундаментальной физике. Возможность управления интерференционными картинами в реальном времени создает основу для манипулирования свойствами материалов и углубленного изучения взаимодействий света с веществом в области квантовой электродинамики.
Гибридная конструкция резонатора позволила исследователям измерить и смоделировать набор допустимых мод внутри полости, обеспечивая возможность переключения между узлами и максимумами световых волн в точках интереса. Математические модели подтверждают экспериментальные наблюдения, расшифровывая сложную дисперсию в резонаторе.