Исследователи из IMDEA Nanociencia (Испания) под руководством Эмилио Переса и Борхи Ибарры совместно с профессором Реймондом Астумяном из Университета Мэна (США) совершили прорыв в понимании работы молекулярных челноков.

Молекулярный челнок представляет собой кольцевую молекулу, нанизанную на линейную молекулярную нить с двумя «станциями». Кольцо перемещается между станциями под воздействием внешних стимулов – химических, световых или механических сил. Движение происходит за счет случайных тепловых скачков, а время пребывания на каждой станции зависит от внешнего воздействия.
Используя оптический пинцет с пиконьютонным разрешением, ученые впервые смогли измерить отдельные траектории перехода молекулярного челнока между станциями в условиях механического равновесия. Ключевым открытием стала симметрия времени перехода: челнок затрачивает одинаковое время как при движении «вперед» (вверх по энергетическому профилю), так и «назад» (вниз).
Анализ данных показал идентичность средних значений прямых и обратных переходов, а также схожесть форм распределения времени в обоих направлениях. Это экспериментально подтвердило принцип микроскопической обратимости, согласно которому на молекулярном уровне каждый процесс и его обращение происходят с одинаковой вероятностью в равновесии.
В 2018 году та же исследовательская группа отслеживала положение молекулярного челнока в течение пяти минут, концентрируясь на времени пребывания на станциях. Новое исследование фокусируется на полной траектории движения и извлечении энергетического профиля вдоль молекулярной нити.
Молекулярные челноки находят применение в наноэлектронных компонентах и биотехнологиях. Они могут служить программируемыми молекулярными переключателями, наноклапанами для систем доставки лекарств, адаптивными биоматериалами и молекулярными мышцами. Важность этого направления подтверждается присуждением Нобелевской премии по химии 2016 года Бену Феринге, Жан-Пьеру Соважу и Дж. Фрейзеру Стоддарту за разработку молекулярных машин.
Это исследование, недавно опубликованное в журнале Chem, закладывает основу для изучения временной последовательности событий в процессе челночного движения и множественных энергетических путей. Полученные результаты помогут в разработке эффективных молекулярных переключателей и моторов для нанотехнологий и биомедицины.

Изображение носит иллюстративный характер
Молекулярный челнок представляет собой кольцевую молекулу, нанизанную на линейную молекулярную нить с двумя «станциями». Кольцо перемещается между станциями под воздействием внешних стимулов – химических, световых или механических сил. Движение происходит за счет случайных тепловых скачков, а время пребывания на каждой станции зависит от внешнего воздействия.
Используя оптический пинцет с пиконьютонным разрешением, ученые впервые смогли измерить отдельные траектории перехода молекулярного челнока между станциями в условиях механического равновесия. Ключевым открытием стала симметрия времени перехода: челнок затрачивает одинаковое время как при движении «вперед» (вверх по энергетическому профилю), так и «назад» (вниз).
Анализ данных показал идентичность средних значений прямых и обратных переходов, а также схожесть форм распределения времени в обоих направлениях. Это экспериментально подтвердило принцип микроскопической обратимости, согласно которому на молекулярном уровне каждый процесс и его обращение происходят с одинаковой вероятностью в равновесии.
В 2018 году та же исследовательская группа отслеживала положение молекулярного челнока в течение пяти минут, концентрируясь на времени пребывания на станциях. Новое исследование фокусируется на полной траектории движения и извлечении энергетического профиля вдоль молекулярной нити.
Молекулярные челноки находят применение в наноэлектронных компонентах и биотехнологиях. Они могут служить программируемыми молекулярными переключателями, наноклапанами для систем доставки лекарств, адаптивными биоматериалами и молекулярными мышцами. Важность этого направления подтверждается присуждением Нобелевской премии по химии 2016 года Бену Феринге, Жан-Пьеру Соважу и Дж. Фрейзеру Стоддарту за разработку молекулярных машин.
Это исследование, недавно опубликованное в журнале Chem, закладывает основу для изучения временной последовательности событий в процессе челночного движения и множественных энергетических путей. Полученные результаты помогут в разработке эффективных молекулярных переключателей и моторов для нанотехнологий и биомедицины.