Как принцип микроскопической обратимости управляет молекулярными челноками?

Исследователи из IMDEA Nanociencia (Испания) под руководством Эмилио Переса и Борхи Ибарры совместно с профессором Реймондом Астумяном из Университета Мэна (США) совершили прорыв в понимании работы молекулярных челноков.
Как принцип микроскопической обратимости управляет молекулярными челноками?
Изображение носит иллюстративный характер

Молекулярный челнок представляет собой кольцевую молекулу, нанизанную на линейную молекулярную нить с двумя «станциями». Кольцо перемещается между станциями под воздействием внешних стимулов – химических, световых или механических сил. Движение происходит за счет случайных тепловых скачков, а время пребывания на каждой станции зависит от внешнего воздействия.

Используя оптический пинцет с пиконьютонным разрешением, ученые впервые смогли измерить отдельные траектории перехода молекулярного челнока между станциями в условиях механического равновесия. Ключевым открытием стала симметрия времени перехода: челнок затрачивает одинаковое время как при движении «вперед» (вверх по энергетическому профилю), так и «назад» (вниз).

Анализ данных показал идентичность средних значений прямых и обратных переходов, а также схожесть форм распределения времени в обоих направлениях. Это экспериментально подтвердило принцип микроскопической обратимости, согласно которому на молекулярном уровне каждый процесс и его обращение происходят с одинаковой вероятностью в равновесии.

В 2018 году та же исследовательская группа отслеживала положение молекулярного челнока в течение пяти минут, концентрируясь на времени пребывания на станциях. Новое исследование фокусируется на полной траектории движения и извлечении энергетического профиля вдоль молекулярной нити.

Молекулярные челноки находят применение в наноэлектронных компонентах и биотехнологиях. Они могут служить программируемыми молекулярными переключателями, наноклапанами для систем доставки лекарств, адаптивными биоматериалами и молекулярными мышцами. Важность этого направления подтверждается присуждением Нобелевской премии по химии 2016 года Бену Феринге, Жан-Пьеру Соважу и Дж. Фрейзеру Стоддарту за разработку молекулярных машин.

Это исследование, недавно опубликованное в журнале Chem, закладывает основу для изучения временной последовательности событий в процессе челночного движения и множественных энергетических путей. Полученные результаты помогут в разработке эффективных молекулярных переключателей и моторов для нанотехнологий и биомедицины.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка