Ssylka

Как миниатюризация тонких пленок открывает новые возможности в наноэлектронике?

Исследователи из Университета Райса совершили прорыв в изучении релаксорных сегнетоэлектриков, обнаружив неожиданное улучшение свойств материала при его сверхтонком состоянии. Команда под руководством Лейна Мартина, директора Института передовых материалов Райса, сфокусировалась на изучении титаната-ниобата свинца-магния (PMN-PT).
Как миниатюризация тонких пленок открывает новые возможности в наноэлектронике?
Изображение носит иллюстративный характер

PMN-PT представляет собой керамический материал с уникальными свойствами преобразования механической энергии в электрическую и наоборот. Его широко применяют в медицинской визуализации, сборе энергии, газовых датчиках и наноэлектронике. Особенность материала заключается в наличии полярных нанодоменов – областей размером 5-10 нанометров, где локальные диполи выстраиваются в одном направлении.

Джиеун Ким, ныне доцент Корейского института передовых технологий (KAIST), начала этот проект четыре года назад, будучи аспиранткой в Калифорнийском университете Беркли. Исследователи предполагали, что при уменьшении толщины пленок PMN-PT полярные нанодомены будут сокращаться и исчезать, что приведет к потере полезных свойств материала.

Используя ультраяркие рентгеновские лучи в Национальной лаборатории Аргонн, команда провела синхротронную рентгеновскую дифракцию для изучения атомной структуры истончающегося материала. Дополнительно применялась просвечивающая электронная микроскопия для картирования поляризации с атомарным разрешением и молекулярно-динамическое моделирование.

Неожиданным открытием стало обнаружение «золотой середины» – диапазона толщины около 25-30 нанометров (в 10000 раз тоньше человеческого волоса), где PMN-PT демонстрирует улучшенные характеристики. В этом диапазоне значительно повышается фазовая стабильность материала, то есть его способность сохранять структуру и функциональность.

Это открытие открывает новые перспективы для наноэлектромеханических систем, накопителей энергии, пироэлектрического преобразования энергии и магнитоэлектрических устройств следующего поколения. «Никто точно не знал, что произойдет, если мы уменьшим весь материал до размера нанодоменов», – отметила Джиеун Ким.

Исследователи планируют создавать многослойные структуры из сверхтонких слоев PMN-PT и родственных материалов, формируя новые композиты с уникальными свойствами для энергосбережения, низкоэнергетических вычислений и передовых датчиков. Результаты исследования, опубликованные в журнале Nature Nanotechnology, предоставляют инженерам новый путь проектирования устройств на основе сверхтонких пленок релаксорных сегнетоэлектриков.


Новое на сайте

18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI?