Ssylka

Как миниатюризация тонких пленок открывает новые возможности в наноэлектронике?

Исследователи из Университета Райса совершили прорыв в изучении релаксорных сегнетоэлектриков, обнаружив неожиданное улучшение свойств материала при его сверхтонком состоянии. Команда под руководством Лейна Мартина, директора Института передовых материалов Райса, сфокусировалась на изучении титаната-ниобата свинца-магния (PMN-PT).
Как миниатюризация тонких пленок открывает новые возможности в наноэлектронике?
Изображение носит иллюстративный характер

PMN-PT представляет собой керамический материал с уникальными свойствами преобразования механической энергии в электрическую и наоборот. Его широко применяют в медицинской визуализации, сборе энергии, газовых датчиках и наноэлектронике. Особенность материала заключается в наличии полярных нанодоменов – областей размером 5-10 нанометров, где локальные диполи выстраиваются в одном направлении.

Джиеун Ким, ныне доцент Корейского института передовых технологий (KAIST), начала этот проект четыре года назад, будучи аспиранткой в Калифорнийском университете Беркли. Исследователи предполагали, что при уменьшении толщины пленок PMN-PT полярные нанодомены будут сокращаться и исчезать, что приведет к потере полезных свойств материала.

Используя ультраяркие рентгеновские лучи в Национальной лаборатории Аргонн, команда провела синхротронную рентгеновскую дифракцию для изучения атомной структуры истончающегося материала. Дополнительно применялась просвечивающая электронная микроскопия для картирования поляризации с атомарным разрешением и молекулярно-динамическое моделирование.

Неожиданным открытием стало обнаружение «золотой середины» – диапазона толщины около 25-30 нанометров (в 10000 раз тоньше человеческого волоса), где PMN-PT демонстрирует улучшенные характеристики. В этом диапазоне значительно повышается фазовая стабильность материала, то есть его способность сохранять структуру и функциональность.

Это открытие открывает новые перспективы для наноэлектромеханических систем, накопителей энергии, пироэлектрического преобразования энергии и магнитоэлектрических устройств следующего поколения. «Никто точно не знал, что произойдет, если мы уменьшим весь материал до размера нанодоменов», – отметила Джиеун Ким.

Исследователи планируют создавать многослойные структуры из сверхтонких слоев PMN-PT и родственных материалов, формируя новые композиты с уникальными свойствами для энергосбережения, низкоэнергетических вычислений и передовых датчиков. Результаты исследования, опубликованные в журнале Nature Nanotechnology, предоставляют инженерам новый путь проектирования устройств на основе сверхтонких пленок релаксорных сегнетоэлектриков.


Новое на сайте

15287Жидкость, восстанавливающая форму: нарушение законов термодинамики 15286Аркадия ведьм: загадка Чарльза годфри Леланда и её влияние на современную магию 15285Кто станет новым героем Звёздных войн в 2027 году? 15283Ануше Ансари | Почему космические исследования важны для Земли 15282Гизем Гумбуская | Синтетический морфогенез: самоконструирующиеся живые архитектуры по... 15281Как предпринимателю остаться хозяином своей судьбы? 15280Люси: путешествие к древним обломкам солнечной системы 15279Роберт Лиллис: извлеченные уроки для экономически эффективных исследований дальнего... 15278Почему супермен до сих пор остаётся символом надежды и морали? 15277Райан Гослинг в роли нового героя «Звёздных войн»: что известно о фильме Star Wars:... 15276Почему экваториальная Гвинея остаётся одной из самых закрытых и жестоких диктатур мира? 15275Почему морские слизни становятся ярче под солнцем? 15274Глен Вейль | Можем ли мы использовать ИИ для построения более справедливого общества? 15273Лириды: где и как увидеть древний звездопад в этом апреле? 15272Сдержит ли налог на однодневных туристов в Венеции наплыв гостей?