Производительность языковых моделей, основанных на архитектуре Transformer, подчиняется строгим степенным законам. Улучшение достигается за счет масштабирования трех ключевых факторов: количества параметров модели (N), объема обучающих данных (D) и общего объема вычислительных ресурсов (C). Другие архитектурные детали, такие как глубина и ширина сети, влияют на результат незначительно, при условии, что общее количество параметров остается постоянным.
Зависимость потерь от этих факторов описывается степенными законами. Потери уменьшаются пропорционально N, D и C, причем эти закономерности сохраняются на протяжении нескольких порядков величины. Важно отметить, что для достижения оптимальной производительности необходимо увеличивать все три фактора масштабирования одновременно. Обучение больших моделей на относительно небольших объемах данных с ранней остановкой оказывается более эффективным с точки зрения использования вычислительных ресурсов, чем обучение меньших моделей до сходимости.
Переобучение возникает, когда модель обучается на ограниченном наборе данных. Штраф за переобучение зависит от соотношения N^0.74 / D. Для избежания переобучения при увеличении размера модели, необходимо увеличивать и размер данных, но в меньшей пропорции. Кривые обучения подчиняются предсказуемым степенным законам, которые не зависят от размера модели.
Оптимальный размер батча при обучении также подчиняется степенному закону в зависимости от потерь и составляет примерно 1-2 миллиона токенов для самых больших моделей. Вычислительные ресурсы следует в основном тратить на увеличение размера модели, а не на увеличение времени обучения. По мере масштабирования модели становятся все более эффективными в использовании данных. Эти результаты обеспечивают основу для прогнозирования производительности языковых моделей и оптимизации процесса их обучения.
Изображение носит иллюстративный характер
Зависимость потерь от этих факторов описывается степенными законами. Потери уменьшаются пропорционально N, D и C, причем эти закономерности сохраняются на протяжении нескольких порядков величины. Важно отметить, что для достижения оптимальной производительности необходимо увеличивать все три фактора масштабирования одновременно. Обучение больших моделей на относительно небольших объемах данных с ранней остановкой оказывается более эффективным с точки зрения использования вычислительных ресурсов, чем обучение меньших моделей до сходимости.
Переобучение возникает, когда модель обучается на ограниченном наборе данных. Штраф за переобучение зависит от соотношения N^0.74 / D. Для избежания переобучения при увеличении размера модели, необходимо увеличивать и размер данных, но в меньшей пропорции. Кривые обучения подчиняются предсказуемым степенным законам, которые не зависят от размера модели.
Оптимальный размер батча при обучении также подчиняется степенному закону в зависимости от потерь и составляет примерно 1-2 миллиона токенов для самых больших моделей. Вычислительные ресурсы следует в основном тратить на увеличение размера модели, а не на увеличение времени обучения. По мере масштабирования модели становятся все более эффективными в использовании данных. Эти результаты обеспечивают основу для прогнозирования производительности языковых моделей и оптимизации процесса их обучения.