Ssylka

Уязвимость ИИ: малая доля дезинформации фатальна для медицинских LLM

Исследование показало, что даже минимальное добавление ложной медицинской информации (всего 0,001% от объема обучающих данных) в большие языковые модели (LLM) может серьезно подорвать их точность. Вносимая дезинформация, специально сгенерированная LLM, способна не только скомпрометировать ответы по конкретной теме, но и повлиять на общую надежность модели в медицинской области. Это происходит из-за того, что LLM обучаются на основе огромных массивов данных из интернета, где дезинформация широко распространена.
Уязвимость ИИ: малая доля дезинформации фатальна для медицинских LLM
Изображение носит иллюстративный характер

Причем, отравление обучающих данных не требует доступа к самой модели. Достаточно просто разместить нужные «фейковые» данные в открытом доступе. Это может быть в виде обычных веб-страниц, которые модели сканируют и индексируют для обучения. При этом даже скрытый на веб-страницах текст может быть воспринят моделью. А это, в свою очередь, делает процесс отравления достаточно дешевым и простым.

Несмотря на то, что медицинские LLM успешно проходят стандартные тесты производительности, это не гарантирует, что они не подвержены отравлению. Более того, попытки улучшить модели после обучения с помощью тонкой настройки или других методов оказались неэффективными. И это является проблемой, ведь люди, не являющиеся специалистами в области медицины, часто будут обращаться за информацией к универсальным поисковым LLM, а не к специализированным медицинским моделям, прошедшим проверку.

В качестве решения проблемы предложен алгоритм перекрестной проверки результатов LLM на основе графа биомедицинских знаний. Этот алгоритм способен выявлять фразы, не прошедшие проверку. Но, в конечном итоге, создание стабильно надежных медицинских LLM остается сложной задачей, усугубляемой устареванием и противоречивостью информации даже в надежных базах данных, таких как PubMed.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года