Автоматическое дифференцирование: ключ к обучению нейросетей

Автоматическое дифференцирование (autodiff) — фундаментальный алгоритм, позволяющий нейросетям учиться. Он вычисляет частные производные переменных, участвующих в преобразованиях, используя цепное правило и аналитические формулы производных. Это позволяет эффективно оптимизировать параметры модели.
Автоматическое дифференцирование: ключ к обучению нейросетей
Изображение носит иллюстративный характер

В основе лежит идея графа вычислений, где узлы представляют собой операнды (значения), а ребра — операции. Прямой проход вычисляет значения функций, передавая результаты по графу. Обратный проход использует цепное правило для определения градиентов ошибки по всем параметрам, начиная с конца графа.

Для каждой операции, такой как сложение, умножение, транспонирование, и сигмоида, существуют аналитические формулы для вычисления производных. Эти производные распространяются обратно по графу, позволяя корректировать веса модели. Реализация строится на классе Tensor, который хранит данные, связи между узлами (родительские узлы) и информацию о проделанной операции.

Упрощенная реализация на Python демонстрирует, как создать класс Tensor и методы для основных операций. Метод backward реализует обратное распространение ошибки. Он вычисляет производные и обновляет их значения, передавая градиент узлам, участвовавшим в создании. Данный метод использует правило суммы для суммирования градиентов, полученных по разным ветвям графа.


Новое на сайте

19168Почему критическая уязвимость BeyondTrust и новые записи в каталоге CISA требуют... 19167Севернокорейская хакерская группировка Lazarus маскирует вредоносный код под тестовые... 19166Государственные хакеры используют Google Gemini для кибершпионажа и клонирования моделей... 19165Можно ли построить мировую сверхдержаву на чашках чая и фунтах сахара? 19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ?
Ссылка