Автоматическое дифференцирование: ключ к обучению нейросетей

Автоматическое дифференцирование (autodiff) — фундаментальный алгоритм, позволяющий нейросетям учиться. Он вычисляет частные производные переменных, участвующих в преобразованиях, используя цепное правило и аналитические формулы производных. Это позволяет эффективно оптимизировать параметры модели.
Автоматическое дифференцирование: ключ к обучению нейросетей
Изображение носит иллюстративный характер

В основе лежит идея графа вычислений, где узлы представляют собой операнды (значения), а ребра — операции. Прямой проход вычисляет значения функций, передавая результаты по графу. Обратный проход использует цепное правило для определения градиентов ошибки по всем параметрам, начиная с конца графа.

Для каждой операции, такой как сложение, умножение, транспонирование, и сигмоида, существуют аналитические формулы для вычисления производных. Эти производные распространяются обратно по графу, позволяя корректировать веса модели. Реализация строится на классе Tensor, который хранит данные, связи между узлами (родительские узлы) и информацию о проделанной операции.

Упрощенная реализация на Python демонстрирует, как создать класс Tensor и методы для основных операций. Метод backward реализует обратное распространение ошибки. Он вычисляет производные и обновляет их значения, передавая градиент узлам, участвовавшим в создании. Данный метод использует правило суммы для суммирования градиентов, полученных по разным ветвям графа.


Новое на сайте