Международная группа ученых совершила значительное открытие в области квантовых материалов, разработав инновационный метод контроля электронных состояний. Исследование, опубликованное в Nature Communications, демонстрирует уникальный подход к управлению экзотическими электронными состояниями в двумерных материалах.

Научная команда, возглавляемая профессором Леем Вангом из Нанкинского университета, совместно с коллегами из Института Макса Планка по структуре и динамике материи (MPSD) и Лаборатории материалов Суншань Лейк (SLAB), разработала революционную методику, основанную на использовании скрученного двойного бислоя дисeленида вольфрама (TDB-WSe₂).
Ключевой особенностью метода является скручивание двух бислоев WSe₂ под углом около 60 градусов с последующим применением перпендикулярного электрического поля. Это позволяет контролировать взаимодействие между K-долинными и Γ-долинными зонами, открывая новые возможности в управлении квантовыми состояниями материи.
В ходе исследования ученые обнаружили новое явление – «долинный изолятор с переносом заряда». Профессор Леде Сян из группы партнеров Макса Планка в SLAB отмечает: «Мы наблюдали непрерывный переход от изолятора Мотта-Хаббарда к долинному изолятору с переносом заряда, что представляет собой совершенно новый физический феномен».
Директор теоретического отдела MPSD Анхель Рубио подчеркивает уникальность разработанного метода: он позволяет манипулировать коррелированными состояниями без необходимости изменения химического состава, создания значительных искажений или применения сильных магнитных полей. Использование электрических полей делает процесс более простым и обратимым.
Исследователи также обнаружили новую форму плоской зоны в Γ-долине, что существенно расширяет понимание квантовых состояний в двумерных материалах. Это открытие базируется на предыдущих исследованиях скрученных ван-дер-ваальсовых материалов и представляет значительный шаг вперед в квантовой физике.
Практическое значение этого прорыва трудно переоценить. Новая технология открывает путь к созданию более эффективных квантовых компьютеров, разработке новых типов сверхпроводников и энергоэффективной электроники. Эти достижения могут стать фундаментом для развития квантовых технологий следующего поколения.

Изображение носит иллюстративный характер
Научная команда, возглавляемая профессором Леем Вангом из Нанкинского университета, совместно с коллегами из Института Макса Планка по структуре и динамике материи (MPSD) и Лаборатории материалов Суншань Лейк (SLAB), разработала революционную методику, основанную на использовании скрученного двойного бислоя дисeленида вольфрама (TDB-WSe₂).
Ключевой особенностью метода является скручивание двух бислоев WSe₂ под углом около 60 градусов с последующим применением перпендикулярного электрического поля. Это позволяет контролировать взаимодействие между K-долинными и Γ-долинными зонами, открывая новые возможности в управлении квантовыми состояниями материи.
В ходе исследования ученые обнаружили новое явление – «долинный изолятор с переносом заряда». Профессор Леде Сян из группы партнеров Макса Планка в SLAB отмечает: «Мы наблюдали непрерывный переход от изолятора Мотта-Хаббарда к долинному изолятору с переносом заряда, что представляет собой совершенно новый физический феномен».
Директор теоретического отдела MPSD Анхель Рубио подчеркивает уникальность разработанного метода: он позволяет манипулировать коррелированными состояниями без необходимости изменения химического состава, создания значительных искажений или применения сильных магнитных полей. Использование электрических полей делает процесс более простым и обратимым.
Исследователи также обнаружили новую форму плоской зоны в Γ-долине, что существенно расширяет понимание квантовых состояний в двумерных материалах. Это открытие базируется на предыдущих исследованиях скрученных ван-дер-ваальсовых материалов и представляет значительный шаг вперед в квантовой физике.
Практическое значение этого прорыва трудно переоценить. Новая технология открывает путь к созданию более эффективных квантовых компьютеров, разработке новых типов сверхпроводников и энергоэффективной электроники. Эти достижения могут стать фундаментом для развития квантовых технологий следующего поколения.