Ssylka

Статистика против Kerberoasting: ломаем правила эвристики

Атаки Kerberoasting остаются угрозой десятилетие спустя. Традиционные методы обнаружения основаны на хрупких эвристиках и статических правилах: они генерируют ложные срабатывания, пропускают медленные атаки и не учитывают аномалии в вариативном трафике Kerberos.
Статистика против Kerberoasting: ломаем правила эвристики
Изображение носит иллюстративный характер

Kerberoasting эксплуатирует протокол аутентификации Windows Active Directory. Злоумышленник через LDAP запрашивает учетные записи с Service Principal Names (SPNs), затем — билеты TGS, зашифрованные хешем пароля сервисного аккаунта. Для этого не нужны права администратора. Полученный хеш взламывается офлайн, что ведет к перемещению в сети и краже данных. Событие Windows Event 4769 фиксирует запрос билета на контроллере домена.

Эвристические методы часто терпят неудачу. Объемный анализ отслеживает всплески запросов TGS, шифровальный — попытки перехода на слабые алгоритмы (RC4/DES вместо AES). Но они игнорируют контекст: поведение пользователей и специфику инфраструктуры домена.

BeyondTrust предложил статистическую модель для точного обнаружения аномалий. Она оценивает распределение вероятностей на основе паттернов данных, группируя похожие запросы в кластеры. Гистограммные интервалы отслеживают частоту активности, обучаясь распознавать норму. Модель соблюдает четыре принципа: интерпретируемость результатов, учет неопределенности данных, масштабируемость без перегрузки облака и адаптация к изменениям (нестационарность).

Тестирование длилось 50 дней (1200 часовых сессий). Модель выявила 6 аномалий: не связанные всплески в коротких окнах, рост вариативности и резкие временные сдвиги. Источники — два теста на проникновение, симуляция Kerberoasting от BeyondTrust и три масштабных изменения AD. Ключевые преимущества: обработка «тяжелохвостых» аккаунтов с экстремальной вариативностью, снижение оценки аномалии после двух последовательных всплесков, динамическое скользящее окно и ранжирование по процентилям в реальном времени.

Успех подхода — в синтезе экспертизы безопасности и статистики. Для противодействия Kerberoasting необходимы превентивные меры, например, BeyondTrust Identity Security Insights. Это решение ITDR выявляет уязвимости: некорректное использование SPN и слабые шифры. Точная профилактика и контекстно-зависимые модели — путь к защите.

Кристофер Кальвани, ассоциированный исследователь безопасности BeyondTrust, комбинирует анализ уязвимостей и разработку систем обнаружения. Выпускник Рочестерского технологического института, ранее работал в Fidelity Investments и Stavvy. Коул Соджа, главный специалист по данным BeyondTrust, применяет статистику 20+ лет. Эксперт в анализе временных рядов и мониторинге поведения, работал в Amazon и Microsoft.


Новое на сайте

18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на... 18575Почему космический мусор стал реальной угрозой для пилотируемых миссий? 18574Зеленый свидетель: как мох помогает раскрывать преступления 18573Инфраструктурная гонка ИИ: Anthropic инвестирует $50 миллиардов для Claude 18572Кровь активных мышей омолодила мозг ленивых сородичей 18571Как легализация ставок превратила азарт в повседневную угрозу?