Ssylka

Как физики научились стабилизировать сверхпроводимость при обычном давлении?

Исследователи из Техасского центра сверхпроводимости при Университете Хьюстона совершили значительный прорыв в области сверхпроводящих материалов. Профессора Ляндзи Дэн и Пол Чинг-Ву Чу разработали инновационный метод стабилизации сверхпроводящих состояний при нормальном атмосферном давлении.
Как физики научились стабилизировать сверхпроводимость при обычном давлении?
Изображение носит иллюстративный характер

Ученые сосредоточили свое внимание на материале Bi0.5Sb1.5Te3 (BST). Еще в 2001 году было замечено, что высокое давление меняет топологию поверхности Ферми этого материала, улучшая его термоэлектрические свойства. Это наблюдение указало на потенциальную связь между давлением, топологией и сверхпроводимостью.

Главной проблемой в исследованиях сверхпроводимости всегда было то, что многие высокотемпературные сверхпроводники работают только при высоком давлении, что делает их непрактичными для изучения и использования. Как отмечал материаловед Пол Дювез, большинство важных для промышленности твердых тел существует в метастабильном состоянии.

Прорывом стала разработка метода, названного Протоколом закалки под давлением (PQP). Этот протокол позволяет сохранять фазы материала, обычно наблюдаемые только при высоком давлении, в стабильном состоянии при нормальном атмосферном давлении.

«Этот эксперимент наглядно демонстрирует возможность стабилизации фазы, индуцированной высоким давлением, при атмосферном давлении через тонкий электронный переход без изменения симметрии», – объясняет профессор Чу. По его словам, это открытие должно помочь в поиске сверхпроводников с более высокими температурами перехода.

Профессор Дэн отмечает еще один важный аспект открытия: «Интересно, что эксперимент выявил новый подход к обнаружению состояний материи, которые изначально не существуют при атмосферном давлении или даже в условиях высокого давления. PQP оказался мощным инструментом для исследования и создания неизученных областей фазовых диаграмм материалов».

Это достижение открывает путь к революционным энергоэффективным технологиям, основанным на высокотемпературной сверхпроводимости при нормальных условиях. Исследователи продолжают поиск сверхпроводников с более высокими температурами перехода и экспериментируют с применением PQP к различным материалам для обнаружения и стабилизации других уникальных фаз, индуцированных высоким давлением.


Новое на сайте

18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI?