Ssylka

Прорыв в спинтронной памяти: новые возможности двумерных материалов

В условиях стремительного развития искусственного интеллекта и интернета вещей возникает острая потребность в высокоскоростных и энергоэффективных устройствах памяти. Традиционные технологии хранения данных часто не способны обеспечить оптимальный баланс между производительностью и энергопотреблением.
Прорыв в спинтронной памяти: новые возможности двумерных материалов
Изображение носит иллюстративный характер

Спинтронные устройства, использующие спин электрона вместо его заряда, представляют собой перспективную альтернативу традиционной электронике. Особый интерес в этой области представляют дихалькогениды переходных металлов (TMD), обладающие уникальными электронными свойствами и значительным потенциалом для миниатюризации.

Исследователи предложили инновационное решение – управляемые затвором спиновые клапаны на основе TMD. Интеграция затворного механизма позволяет модулировать свойства спинового транспорта и обеспечивает точный контроль над операциями памяти. Результаты исследования опубликованы в журнале "Journal of Alloys and Compounds".

Новая технология демонстрирует впечатляющие показатели производительности. Достигнуты коэффициенты туннельного магнетосопротивления (TMR), превышающие 4000%, что свидетельствует о высокоэффективном спин-зависимом транспорте. Некоторые конфигурации устройств показывают сверхнизкое энергопотребление – около 80 микроватт.

Особенно важным достижением стало получение высоких коэффициентов спиновой поляризации, достигающих 0,9. Это открывает широкие возможности для создания более эффективных устройств памяти следующего поколения.

Спинтронные устройства памяти на основе TMD идеально подходят для применения в современных технологических областях, требующих высокой скорости работы и энергоэффективности. Их характеристики полностью соответствуют растущим требованиям систем искусственного интеллекта и интернета вещей.


Новое на сайте

9497Экологические риски добычи лития в крупнейшем месторождении мира 9496Где искать топологическую сверхпроводимость: новый теоретический прорыв 9495Как управлять терагерцовым излучением в воздухе? 9494Прорыв в квантовых вычислениях: успешное моделирование рассеяния частиц 9493Прорыв в квантовой акустике: ученые впервые связали массивные звуковые резонаторы 9492Загадка космических фонтанов: новое исследование бросает вызов теории формирования... 9491Как физики научились стабилизировать сверхпроводимость при обычном давлении? 9490Революционный прорыв: фотонные детекторы научились распознавать протоны высоких энергий 9489Как физики впервые определили верхний предел в поисках гибридных мезонов? 9488Как квантовая запутанность экситонов меняет будущее органических полупроводников? 9487Как устроена загадочная двойная система пульсара M53A? 9486Революционный подход к спасению океана: биоразлагаемое рыболовное снаряжение 9485Как микролазер размером с чип изменит будущее квантовой криптографии? 9484Почему пожары, вызванные человеком, становятся главной угрозой для западных штатов США? 9483Прорыв в оптике: атомные решетки открывают путь к невидимости