Исследователи из Центра emergent matter science RIKEN – Синго Кобаяси и Акира Фурусаки – совершили важное теоретическое открытие в области сверхпроводимости. Их работа, опубликованная в Physical Review B, существенно расширяет спектр материалов, в которых может наблюдаться топологическая сверхпроводимость.
![Где искать топологическую сверхпроводимость: новый теоретический прорыв](/images/topic/9496.jpg)
Сверхпроводники, материалы способные проводить электрический ток без сопротивления при охлаждении ниже критической температуры, были впервые продемонстрированы в начале XX века. С тех пор учёные выделили два основных типа: обычные сверхпроводники с хорошо изученным механизмом работы и необычные, механизм действия которых до конца не ясен.
В последнее десятилетие особое внимание привлек новый класс материалов – топологические сверхпроводники. Ранее считалось, что это явление присуще лишь небольшому числу материалов, однако новое исследование опровергает данное предположение.
Ключевым механизмом сверхпроводимости является образование куперовских пар – спаренных состояний электронов. В обычных сверхпроводниках наблюдается s-волновое спаривание с симметрией относительно центральной точки, тогда как в необычных встречаются более сложные p-волновое и d-волновое спаривания.
Значительным результатом исследования стало теоретическое предсказание топологической s-волновой сверхпроводимости в материалах, включающих железосодержащие сверхпроводники. «Мы обнаружили богатую топологическую структуру даже при s-волновом спаривании и выявили новую топологическую фазу», – отмечает Кобаяси.
Открытие новой топологической фазы в хорошо изученном классе сверхпроводников существенно расширяет возможности исследований. По словам Кобаяси, это имеет «значительные последствия для продвижения поиска топологических сверхпроводников и углубления изучения высокотемпературных сверхпроводников».
Исследователи планируют обобщить концепцию топологической s-волновой сверхпроводимости на другие сверхпроводящие материалы и изучить новые квантовые явления, связанные с топологическими фазами. Это открытие не только расширяет фундаментальные знания о сверхпроводимости, но и открывает новые перспективы для практических применений, включая квантовые вычисления.
![Где искать топологическую сверхпроводимость: новый теоретический прорыв](/images/topic/9496.jpg)
Изображение носит иллюстративный характер
Сверхпроводники, материалы способные проводить электрический ток без сопротивления при охлаждении ниже критической температуры, были впервые продемонстрированы в начале XX века. С тех пор учёные выделили два основных типа: обычные сверхпроводники с хорошо изученным механизмом работы и необычные, механизм действия которых до конца не ясен.
В последнее десятилетие особое внимание привлек новый класс материалов – топологические сверхпроводники. Ранее считалось, что это явление присуще лишь небольшому числу материалов, однако новое исследование опровергает данное предположение.
Ключевым механизмом сверхпроводимости является образование куперовских пар – спаренных состояний электронов. В обычных сверхпроводниках наблюдается s-волновое спаривание с симметрией относительно центральной точки, тогда как в необычных встречаются более сложные p-волновое и d-волновое спаривания.
Значительным результатом исследования стало теоретическое предсказание топологической s-волновой сверхпроводимости в материалах, включающих железосодержащие сверхпроводники. «Мы обнаружили богатую топологическую структуру даже при s-волновом спаривании и выявили новую топологическую фазу», – отмечает Кобаяси.
Открытие новой топологической фазы в хорошо изученном классе сверхпроводников существенно расширяет возможности исследований. По словам Кобаяси, это имеет «значительные последствия для продвижения поиска топологических сверхпроводников и углубления изучения высокотемпературных сверхпроводников».
Исследователи планируют обобщить концепцию топологической s-волновой сверхпроводимости на другие сверхпроводящие материалы и изучить новые квантовые явления, связанные с топологическими фазами. Это открытие не только расширяет фундаментальные знания о сверхпроводимости, но и открывает новые перспективы для практических применений, включая квантовые вычисления.