Ssylka

Объективная оценка качества LLM: от метрик к практике

Выбор правильных метрик для оценки LLM — важная задача, влияющая на качество работы всей системы. Существуют разные типы метрик, от статистических до основанных на нейросетях, но наиболее эффективными являются те, что используют LLM в качестве «судьи» (например, G-Eval). Они лучше учитывают семантику и способны более точно оценить результат.
Объективная оценка качества LLM: от метрик к практике
Изображение носит иллюстративный характер

Метрики RAG (Retrieval-Augmented Generation) необходимы для оценки систем, генерирующих текст с учетом контекста. Важными показателями являются: достоверность (соответствие фактам), релевантность ответа, контекстная точность (ранжирование релевантных узлов), контекстная полнота (покрытие информации из контекста) и общая контекстная релевантность (соответствие запросу). Для их вычисления часто используется метод QAG (Question Answering Generation), который задаёт закрытые вопросы и анализирует ответы.

Метрики для дообучения LLM, такие как оценка галлюцинаций (вымышленных фактов), токсичности (наличие оскорблений) и предвзятости, оценивают качество самой модели. Обнаружение галлюцинаций можно проводить методом SelfCheckGPT, а токсичность и предвзятость можно измерять, используя LLM как «судью» с помощью G-Eval, задавая соответствующие критерии. Предвзятость – это крайне субъективная категория, она может существенно варьироваться в зависимости от географических, геополитических и геосоциальных условий.

Для оценки специфичных задач можно использовать метрику соответствия инструкциям, которая оценивает, насколько точно LLM выполняет указания, или метрику резюмирования, оценивающую точность и полноту сжатого текста. Для конкретных случаев использования подойдут кастомные метрики с помощью G-Eval, где гибко задаются критерии оценки. Выбор конкретных метрик зависит от задач, стоящих перед LLM, и ее архитектуры.


Новое на сайте

18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI? 18589Как Operation Endgame нанесла сокрушительный удар по глобальной киберпреступности? 18588Кибервойна на скорости машин: почему защита должна стать автоматической к 2026 году 18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными?