Ssylka

LLM-ассистирование в разработке: от прототипов до архитектурных вызовов

Современные LLM-инструменты способны генерировать код, что вызывает споры о будущем программирования. Одни видят в них помощников, повышающих абстракцию, другие – угрозу профессиональным навыкам. LLM действительно ускоряют создание прототипов и упрощают рутинные задачи, но их применение в масштабных проектах сталкивается с трудностями. Они хороши для генерации кода по описанию, но понимания архитектуры и сложных взаимосвязей между модулями им не хватает.
LLM-ассистирование в разработке: от прототипов до архитектурных вызовов
Изображение носит иллюстративный характер

LLM-ассистирование эффективно при создании небольших автономных модулей, скриптов, микросервисов или прототипов. LLM отлично справляются с задачами, где нужно переложить данные из одного формата в другой (например, из JSON в SQLITE), но, как показали эксперименты автора, LLM часто допускают ошибки и вносят избыточную сложность, особенно в низкоуровневом коде. Проблемы возникают и в верстке интерфейсов, где требуется точная настройка элементов на экране, поскольку LLM не обладает визуальным восприятием.

В процессе работы с LLM-инструментами важно понимать, что они не заменяют программиста, а выступают в роли «джуна» под руководством «мидла». Необходимо самостоятельно проектировать архитектуру, разбивать задачи на модули и пересматривать сгенерированный код. LLM плохо справляются с рефакторингом, если он касается сложных частей кода, которые они не могут полностью понять. Критическое отношение к коду LLM и умение направлять ее, предлагая примеры и точные требования, необходимы, чтобы получить качественный результат.

LLM помогают быстрее писать тесты, правильно указывать ошибки в коде, но не всегда понимают контекст и не критичны к неверным указаниям. Необходимо избегать запросов, которые включают в себя сложный функционал, включающий разные области. Так же, не стоит полагаться на LLM в вопросах управления зависимостями проекта. Несмотря на все ограничения, LLM-инструменты могут стать мощным средством повышения продуктивности, если использовать их с умом и критическим отношением к результатам их работы.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года