Ssylka

Могут ли спирали сверхтекучести стать ключом к пониманию квантовой механики?

Исследователи из Киотского университета совершили прорыв, разработав контролируемый метод возбуждения и наблюдения волн Кельвина в сверхтекучем гелии-4, что открывает новые горизонты для изучения квантовых явлений. Волны Кельвина, спиралевидные колебания, распространяющиеся вдоль вихревых линий в сверхтекучих средах, впервые были описаны лордом Кельвином еще в 1880 году. До недавнего времени их изучение в лабораторных условиях было крайне затруднительным, обычно они возникали спонтанно и неожиданно. Новая методика позволяет не только возбуждать эти волны, но и детально изучать их свойства.
Могут ли спирали сверхтекучести стать ключом к пониманию квантовой механики?
Изображение носит иллюстративный характер

Сверхтекучесть – это уникальное состояние вещества, проявляющееся при экстремально низких температурах, когда жидкости демонстрируют квантовые эффекты на макроскопическом уровне. Одной из главных характеристик сверхтекучести является нулевая вязкость, позволяющая жидкости течь без какого-либо трения. Гелий-4, в частности, переходит в это состояние при охлаждении ниже 2.17 Кельвина (-270.98°C). При таких температурах он демонстрирует поразительные явления, например, возможность подниматься по стенкам контейнера вопреки силе тяжести. Сверхтекучесть объясняется конденсацией Бозе-Эйнштейна, квантовым эффектом, при котором большая часть частиц переходит в одно и то же квантовое состояние.

Энергия в сверхтекучих жидкостях рассеивается именно через волны Кельвина. Экспериментальный метод был обнаружен случайно, когда ученые пытались переместить наночастицы, закрепленные на вихре, с помощью электрического поля. Вихревая линия – это ось, вокруг которой вращается сверхтекучая жидкость. Наночастицы из кремния были созданы в сверхтекучем гелии-4 при температуре 1.4 Кельвина с помощью лазера, воздействующего на кремниевую пластину. Эти частицы оказались захвачены в ядрах остаточных вихрей из-за локальных потоков, возникающих во время их формирования.

Используя переменное электрическое поле, исследователи вызвали колебания наночастиц, что, в свою очередь, создало волны Кельвина вдоль вихревой линии. Частоты, используемые для анализа поведения волн, лежали в диапазоне от 0.8 до 3.0 Герц. Для трехмерной реконструкции движения волн использовалась система из двух камер и методы подгонки сплайновых кривых. Полученные экспериментальные данные были подтверждены с помощью симуляций на основе модели вихревых нитей.

Значение этого исследования трудно переоценить. Разработанный метод открывает путь к манипулированию и наблюдению за поведением квантовых жидкостей. Это может стать отправной точкой для разработки аналогичных методов в других квантовых системах. Теперь ученые могут изучать свойства волн Кельвина, включая дисперсионные соотношения, фазовую скорость и трехмерную динамику. Кроме того, исследование подтвердило спиралевидную структуру волн и впервые определило их хиральность – в данном случае, левозакрученную спираль.

Полученные результаты не только углубляют понимание физики сверхтекучести, но и предоставляют новый инструмент для изучения процессов переноса и рассеяния энергии в этих уникальных квантовых жидкостях. Это открытие – важный шаг на пути к более полному пониманию квантовых процессов.

Данные исследования могут способствовать развитию технологий, основанных на использовании свойств сверхтекучести.

В будущем исследования будут направлены на изучение нелинейных и диссипативных процессов, связанных с волнами Кельвина. Например, как происходит их распад и как они взаимодействуют друг с другом. Кроме того, большой интерес представляет изучение механических свойств и характеристика квантованных вихрей. Эти исследования помогут углубить понимание фундаментальных законов физики и, возможно, приведут к новым технологическим прорывам.

Первым автором исследования, опубликованного в журнале Nature Physics, является доцент Йосуке Минова из Киотского университета. Контролируемое возбуждение и наблюдение волн Кельвина – это значительный шаг вперед в изучении квантовой физики, позволяющий пролить свет на процессы, которые до сих пор оставались загадкой. Теперь перед исследователями открываются новые возможности для изучения загадочного мира сверхтекучести и ее уникальных свойств.


Новое на сайте

19003Какие устаревшие привычки уничтожают эффективность MTTR вашего SOC в 2026 году? 19002Критическая ошибка в GlobalProtect позволяет удаленно отключить защиту межсетевых экранов... 19001Как дешевые серверы RedVDS стали инструментом глобального мошенничества на 40 миллионов... 19000Являются ли обнаруженные телескопом «Джеймс Уэбб» загадочные объекты «коконами» для... 18999Почему внедрение ИИ-агентов создает скрытые каналы для несанкционированной эскалации... 18998Космический детектив: сверхмассивная черная дыра обрекла галактику Пабло на голодную... 18997Аномальная «звезда-зомби» RXJ0528+2838 генерирует необъяснимую радужную ударную волну 18996Эйрена против Ареса: изобретение богини мира в разгар бесконечных войн древней Греции 18995Новые методы кибератак: эксплуатация GitKraken, Facebook-фишинг и скрытые туннели... 18994Как Уилл Смит рисковал жизнью ради науки в новом глобальном путешествии? 18993Как потеря 500 миллионов фунтов привела к рождению науки о трении? 18992Как критические уязвимости в FortiSIEM и FortiFone позволяют злоумышленникам получить... 18991Что рассказывает самый полный скелет Homo habilis об эволюции человека? 18990Почему 64% сторонних приложений получают необоснованный доступ к конфиденциальным данным? 18989Почему обновление Microsoft за январь 2026 года критически важно из-за активных атак на...