Ssylka

Могут ли спирали сверхтекучести стать ключом к пониманию квантовой механики?

Исследователи из Киотского университета совершили прорыв, разработав контролируемый метод возбуждения и наблюдения волн Кельвина в сверхтекучем гелии-4, что открывает новые горизонты для изучения квантовых явлений. Волны Кельвина, спиралевидные колебания, распространяющиеся вдоль вихревых линий в сверхтекучих средах, впервые были описаны лордом Кельвином еще в 1880 году. До недавнего времени их изучение в лабораторных условиях было крайне затруднительным, обычно они возникали спонтанно и неожиданно. Новая методика позволяет не только возбуждать эти волны, но и детально изучать их свойства.
Могут ли спирали сверхтекучести стать ключом к пониманию квантовой механики?
Изображение носит иллюстративный характер

Сверхтекучесть – это уникальное состояние вещества, проявляющееся при экстремально низких температурах, когда жидкости демонстрируют квантовые эффекты на макроскопическом уровне. Одной из главных характеристик сверхтекучести является нулевая вязкость, позволяющая жидкости течь без какого-либо трения. Гелий-4, в частности, переходит в это состояние при охлаждении ниже 2.17 Кельвина (-270.98°C). При таких температурах он демонстрирует поразительные явления, например, возможность подниматься по стенкам контейнера вопреки силе тяжести. Сверхтекучесть объясняется конденсацией Бозе-Эйнштейна, квантовым эффектом, при котором большая часть частиц переходит в одно и то же квантовое состояние.

Энергия в сверхтекучих жидкостях рассеивается именно через волны Кельвина. Экспериментальный метод был обнаружен случайно, когда ученые пытались переместить наночастицы, закрепленные на вихре, с помощью электрического поля. Вихревая линия – это ось, вокруг которой вращается сверхтекучая жидкость. Наночастицы из кремния были созданы в сверхтекучем гелии-4 при температуре 1.4 Кельвина с помощью лазера, воздействующего на кремниевую пластину. Эти частицы оказались захвачены в ядрах остаточных вихрей из-за локальных потоков, возникающих во время их формирования.

Используя переменное электрическое поле, исследователи вызвали колебания наночастиц, что, в свою очередь, создало волны Кельвина вдоль вихревой линии. Частоты, используемые для анализа поведения волн, лежали в диапазоне от 0.8 до 3.0 Герц. Для трехмерной реконструкции движения волн использовалась система из двух камер и методы подгонки сплайновых кривых. Полученные экспериментальные данные были подтверждены с помощью симуляций на основе модели вихревых нитей.

Значение этого исследования трудно переоценить. Разработанный метод открывает путь к манипулированию и наблюдению за поведением квантовых жидкостей. Это может стать отправной точкой для разработки аналогичных методов в других квантовых системах. Теперь ученые могут изучать свойства волн Кельвина, включая дисперсионные соотношения, фазовую скорость и трехмерную динамику. Кроме того, исследование подтвердило спиралевидную структуру волн и впервые определило их хиральность – в данном случае, левозакрученную спираль.

Полученные результаты не только углубляют понимание физики сверхтекучести, но и предоставляют новый инструмент для изучения процессов переноса и рассеяния энергии в этих уникальных квантовых жидкостях. Это открытие – важный шаг на пути к более полному пониманию квантовых процессов.

Данные исследования могут способствовать развитию технологий, основанных на использовании свойств сверхтекучести.

В будущем исследования будут направлены на изучение нелинейных и диссипативных процессов, связанных с волнами Кельвина. Например, как происходит их распад и как они взаимодействуют друг с другом. Кроме того, большой интерес представляет изучение механических свойств и характеристика квантованных вихрей. Эти исследования помогут углубить понимание фундаментальных законов физики и, возможно, приведут к новым технологическим прорывам.

Первым автором исследования, опубликованного в журнале Nature Physics, является доцент Йосуке Минова из Киотского университета. Контролируемое возбуждение и наблюдение волн Кельвина – это значительный шаг вперед в изучении квантовой физики, позволяющий пролить свет на процессы, которые до сих пор оставались загадкой. Теперь перед исследователями открываются новые возможности для изучения загадочного мира сверхтекучести и ее уникальных свойств.


Новое на сайте

19147Бывший инженер Google осужден за экономический шпионаж и передачу секретов искусственного... 19146Насколько критичны новые уязвимости SmarterMail и почему их немедленное исправление... 19145Истинный контроль и природа человеческого мастерства: от учения эпиктета до современной... 19144Критические уязвимости нулевого дня в Ivanti EPMM активно эксплуатируются злоумышленниками 19143Почему биология и социальное давление толкают элиту на смертельный риск ради славы и... 19142Почему сотни энергетических объектов по всему миру остаются критически уязвимыми перед... 19141Возможен ли бесконечный полет дронов благодаря новой системе лазерной подзарядки? 19140Химический анализ впервые подтвердил использование человеческих экскрементов в римской... 19139Как искусственный интеллект AnomalyMatch всего за два дня обнаружил 1300 неизвестных... 19138Какие три стратегических решения директора по информационной безопасности предотвратят... 19137Почему обнаруженные в SolarWinds Web Help Desk критические уязвимости требуют... 19136Древнейшие в мире ручные деревянные орудия возрастом 430 000 лет обнаружены в Греции 19135Как древнейший генетический диагноз раскрыл тайну жизни подростка-инвалида в каменном... 19134Способны ли новые рои искусственного интеллекта незаметно захватить человеческое сознание? 19133Могут ли сложные дипептиды зарождаться в ледяном вакууме космоса, становясь основой жизни...