Учёные из Еврейского университета в Иерусалиме и Корнеллского университета обнаружили, что даже слабые магнитные поля способны значительно продлевать время когерентности электронных спинов — ключевого ресурса для квантовых технологий. Метод позволяет подавлять декогеренцию, то есть потерю квантового состояния, практически в десять раз эффективнее по сравнению с предыдущими представлениями.

Электронные спины — это крошечные магнитные свойства атомов, которые можно использовать для хранения информации в квантовых датчиках, атомных часах и других устройствах. Их основная проблема заключается в быстрой потере когерентности, вызванной взаимодействиями с окружающей средой или определёнными видами света. Новый подход предлагает решение этой задачи, позволяя сохранять квантовое состояние значительно дольше.
Исследование проводилось в Институте прикладной физики и Наноцентре Еврейского университета, а также в Корнеллском университете. Результаты опубликованы в журнале Physical Review Letters. Руководили работой Марк Дикопольцев и Авраам Береби, научное руководство осуществляли профессор Уриэль Леви и профессор Ор Кац.
В центре экспериментов была система горячих спинов цезия, подвергающихся взаимодействию с молекулами азота (спин-ротационное взаимодействие) и воздействию света, близкого к резонансному. Применение слабых магнитных полей позволило существенно подавить процессы релаксации, которые обычно приводят к быстрой декогеренции.
Ранее считалось, что контроль над декогеренцией с помощью слабых магнитных полей возможен только в определённых режимах, например, при спин-обменной релаксации (SERF). Новое исследование показывает, что такие поля могут управлять даже теми механизмами, которые не только сохраняют, но и активно разрушают спиновое состояние. Как отметил Марк Дикопольцев: «Наши результаты показывают, что слабые магнитные поля полезны не только для предотвращения декогеренции от случайных, спин-сохраняющих взаимодействий. Они способны подавлять и более разрушительные процессы релаксации, предоставляя нам мощный инструмент для сохранения когерентности спинов».
Этот научный прорыв расширяет фундаментальное понимание динамики спинов и управления квантовыми состояниями в горячих парах атомов. Технологические последствия огромны: открывается путь к созданию более стабильных и точных атомных часов, эффективной квантовой памяти, высокочувствительных магнитометров и других устройств, где критически важна долговечность когерентности спинов.
В ходе работы исследователи добились порядка десятикратного снижения скорости релаксации спинов — это означает значительное увеличение времени хранения квантовой информации. Такие результаты были получены на парах цезия, одном из наиболее распространённых материалов для квантовых исследований.
Понимание и контроль над спин-ротационными взаимодействиями, возникающими при столкновениях с молекулами азота, а также влияние света, оказались ключевыми факторами в подавлении декогеренции при помощи слабых магнитных полей. Это открывает новые горизонты для манипуляций спиновыми состояниями в широком диапазоне условий.
Исследование Марка Дикопольцева, Авраама Береби и их коллег закладывает научную основу для следующего этапа развития квантовых технологий, делая шаг к созданию устройств нового поколения, в которых квантовая информация будет сохраняться гораздо дольше.

Изображение носит иллюстративный характер
Электронные спины — это крошечные магнитные свойства атомов, которые можно использовать для хранения информации в квантовых датчиках, атомных часах и других устройствах. Их основная проблема заключается в быстрой потере когерентности, вызванной взаимодействиями с окружающей средой или определёнными видами света. Новый подход предлагает решение этой задачи, позволяя сохранять квантовое состояние значительно дольше.
Исследование проводилось в Институте прикладной физики и Наноцентре Еврейского университета, а также в Корнеллском университете. Результаты опубликованы в журнале Physical Review Letters. Руководили работой Марк Дикопольцев и Авраам Береби, научное руководство осуществляли профессор Уриэль Леви и профессор Ор Кац.
В центре экспериментов была система горячих спинов цезия, подвергающихся взаимодействию с молекулами азота (спин-ротационное взаимодействие) и воздействию света, близкого к резонансному. Применение слабых магнитных полей позволило существенно подавить процессы релаксации, которые обычно приводят к быстрой декогеренции.
Ранее считалось, что контроль над декогеренцией с помощью слабых магнитных полей возможен только в определённых режимах, например, при спин-обменной релаксации (SERF). Новое исследование показывает, что такие поля могут управлять даже теми механизмами, которые не только сохраняют, но и активно разрушают спиновое состояние. Как отметил Марк Дикопольцев: «Наши результаты показывают, что слабые магнитные поля полезны не только для предотвращения декогеренции от случайных, спин-сохраняющих взаимодействий. Они способны подавлять и более разрушительные процессы релаксации, предоставляя нам мощный инструмент для сохранения когерентности спинов».
Этот научный прорыв расширяет фундаментальное понимание динамики спинов и управления квантовыми состояниями в горячих парах атомов. Технологические последствия огромны: открывается путь к созданию более стабильных и точных атомных часов, эффективной квантовой памяти, высокочувствительных магнитометров и других устройств, где критически важна долговечность когерентности спинов.
В ходе работы исследователи добились порядка десятикратного снижения скорости релаксации спинов — это означает значительное увеличение времени хранения квантовой информации. Такие результаты были получены на парах цезия, одном из наиболее распространённых материалов для квантовых исследований.
Понимание и контроль над спин-ротационными взаимодействиями, возникающими при столкновениях с молекулами азота, а также влияние света, оказались ключевыми факторами в подавлении декогеренции при помощи слабых магнитных полей. Это открывает новые горизонты для манипуляций спиновыми состояниями в широком диапазоне условий.
Исследование Марка Дикопольцева, Авраама Береби и их коллег закладывает научную основу для следующего этапа развития квантовых технологий, делая шаг к созданию устройств нового поколения, в которых квантовая информация будет сохраняться гораздо дольше.