Ssylka

Что такое «квантовый дождь» и как его наблюдали впервые?

Исследователи из Лаборатории квантовых смесей Национального института оптики (Cnr-Ino) совместно с учёными из Национального исследовательского совета Италии (Cnr), Университета Флоренции, Европейской лаборатории нелинейной спектроскопии (LENS), а также университетов Болоньи, Падуи и Страны Басков (UPV/EHU) впервые зафиксировали явление, которое они называют «квантовым дождём». Результаты опубликованы в журнале Physical Review Letters.
Что такое «квантовый дождь» и как его наблюдали впервые?
Изображение носит иллюстративный характер

Впервые в истории капиллярная неустойчивость, известная как неустойчивость Плато – Рэлей, была обнаружена не только в классических жидкостях (как вода или сверхтекучий гелий), но и в ультраразреженном квантовом газе. В классических жидкостях капиллярная неустойчивость проявляется в разрыве тонкой струи жидкости на последовательность капель — процесс, который лежит в основе образования дождя и пузырей, а также широко используется в промышленности, биомедицине и нанотехнологиях.

В классических жидкостях этот процесс происходит благодаря поверхностному натяжению — явлению, обусловленному межмолекулярными силами, стремящимися минимизировать площадь поверхности. В результате, например, капля дождя принимает форму шара, а мыльный пузырь — сферу.

В квантовой физике ситуация усложняется: если атомные газы охлаждать до температур, близких к абсолютному нулю, отдельные атомы теряют индивидуальность и начинают подчиняться законам квантовой механики. В определённых условиях такие газы могут вести себя как жидкости, хотя сами по себе они всё ещё остаются газами. Учёные научились формировать из сверххолодных атомных смесей (например, калия и рубидия) связанные, «жидкоподобные» капли. Эти капли стабилизируются исключительно за счёт квантовых эффектов, и по своему поведению напоминают обычные жидкие капли.

Эксперимент, проведённый под руководством Алессии Буркянти (Cnr-Ino), заключался в исследовании динамики одной квантовой капли из смеси ультрахолодных атомов калия и рубидия. Каплю выпускали в оптический световод, где она вытягивалась в тонкую нить — «филамент». При достижении критической длины этот филамент разрывался на несколько меньших капель — квантовых субдроплетов. Количество образовавшихся субдроплетов оказывалось прямо пропорциональным длине филамента в момент разрыва.

Команда исследователей совместила экспериментальные наблюдения и численное моделирование, чтобы описать динамику распада квантовой капли на субдроплеты в терминах капиллярной неустойчивости. «Объединяя эксперименты и численные симуляции, удалось описать динамику распада квантовой капли с точки зрения капиллярной неустойчивости», — отмечает исследователь Университета Флоренции Кьяра Форт.

Лука Кавиккиоли, первый автор публикации и сотрудник Cnr-Ino, подчёркивает: «Измерения позволили глубоко понять эту уникальную жидкую фазу и открывают путь к созданию массивов квантовых капель для будущих квантовых технологий».

До этого момента капиллярная неустойчивость в атомных газах не фиксировалась ни в одном эксперименте. Её наблюдали лишь в классических жидкостях и сверхтекучем гелии. Теперь впервые показано, что квантовые жидкости из ультраразреженных газов способны демонстрировать аналогичные явления.

Открытие «квантового дождя» не только подтверждает существование новых фаз квантовых жидкостей, но и открывает перспективы для создания массивов квантовых капель, что может стать основой для новых технологий в области квантовых вычислений и сенсорики.


Новое на сайте

18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI? 18589Как Operation Endgame нанесла сокрушительный удар по глобальной киберпреступности? 18588Кибервойна на скорости машин: почему защита должна стать автоматической к 2026 году 18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на...