Применение механизма внимания в задаче коммивояжера

Механизм внимания, изначально разработанный для улучшения seq-to-seq моделей в задачах машинного перевода, нашел применение в решении задачи коммивояжера. Заменив токены слов координатами городов, можно использовать архитектуру Pointer Networks. Этот подход, основанный на обучении с подкреплением, позволяет модели самостоятельно находить оптимальные маршруты, минимизируя общую дистанцию.
Применение механизма внимания в задаче коммивояжера
Изображение носит иллюстративный характер

Pointer Networks используют кодировщик и декодер, как в моделях перевода, но вместо целевого текста генерируют последовательность индексов городов. В модулях внимания происходит вычисление вероятностей выбора следующего города, основываясь на скрытом состоянии декодера и выходах кодировщика. Эта вероятность корректируется с учетом уже посещенных городов, гарантируя, что модель не выберет один и тот же город дважды.

Обучение модели происходит путем сравнения результатов множества проходов. Целью оптимизации является минимизация пути. Модель обучается находить кратчайший путь, опираясь на награду, основанную на сравнении длины текущего маршрута с длинами предыдущих итераций. При этом на итоговый результат влияет не только финальный результат, но и промежуточные.

Несмотря на перспективность подхода, Pointer Networks сталкиваются с ограничениями: рекуррентная природа LSTM/GRU блоков препятствует параллелизации вычислений. Также остается вопрос, насколько важна последовательность посещения городов для выбора следующего. Тем не менее, модели демонстрируют способность к обобщению, что позволяет применять их для решения задач с новыми наборами координат городов.


Новое на сайте

19188Критическая уязвимость в решениях BeyondTrust спровоцировала глобальную волну кражи... 19187Эволюция угроз: атака на цепочку поставок ИИ-ассистента Cline CLI через уязвимость... 19186Как фальшивая проверка Cloudflare в кампании ClickFix скрыто внедряет новый троян... 19185Почему гендерно-нейтральные корпоративные политики становятся главным инструментом... 19184Как искусственный интеллект уничтожил временной зазор между обнаружением уязвимости и... 19183Банковский троян Massiv маскируется под IPTV для захвата контроля над Android 19182Как шпионская кампания CRESCENTHARVEST использует социальную инженерию для кражи данных... 19181Как критическая уязвимость в телефонах Grandstream открывает хакерам доступ к... 19180Почему операционная непрерывность становится единственным ответом на перманентную... 19179Критические уязвимости в популярных расширениях VS Code угрожают миллионам разработчиков 19178Как внедрить интеллектуальные рабочие процессы и почему 88% проектов ИИ терпят неудачу? 19177Критическая уязвимость нулевого дня в Dell RecoverPoint открывает злоумышленникам полный... 19176Notepad++ внедряет механизм двойной блокировки для защиты от атак группировки Lotus Panda 19175Новые угрозы в каталоге CISA: от критических дыр в Chrome и Zimbra до возвращения червя... 19174Использование чат-ботов Copilot и Grok в качестве скрытых прокси-серверов для управления...
Ссылка