Международная группа физиков из Университета Арканзаса, Нанкинского университета и Университета Люксембурга представила инновационный подход к моделированию атомных структур. В статье "Active learning of effective Hamiltonian for super-large-scale atomic structures", опубликованной в журнале npj Computational Materials, ученые описали метод, основанный на машинном обучении, который позволяет моделировать мезоскопические структуры, содержащие миллионы атомов.

Традиционные методы квантовой и классической механики имеют существенные ограничения при работе с крупномасштабными атомными структурами. Новый подход преодолевает эти ограничения, используя эффективный гамильтониан – математическое выражение энергии системы с различными членами связи. Ключевое преимущество метода заключается в автоматизации расчета параметров с помощью алгоритмов машинного обучения.
Вычисление параметров для эффективного гамильтониана традиционно представляло собой сложную задачу, требующую глубоких теоретических знаний и значительных вычислительных ресурсов. Разработанный метод предлагает универсальный и автоматический способ вычисления этих параметров для сложных систем, что значительно упрощает процесс моделирования.
Новая технология открывает широкие возможности для изучения мезоскопических структур в сегнетоэлектриках и диэлектриках. Это особенно важно для понимания свойств материалов на промежуточных масштабах, где квантовые эффекты все еще играют существенную роль, но структуры слишком велики для прямых квантово-механических расчетов.
Исследователи подчеркивают, что их метод является одним из самых быстрых вычислительных подходов на атомном уровне. Это позволяет ученым проектировать новые материалы с заданными свойствами, такими как сегнетоэлектрические и пьезоэлектрические характеристики, что имеет огромное значение для развития современных технологий.
В качестве следующего шага команда планирует предложить общий эффективный гамильтониан, основанный на решетчатой функции Ванье и принципах симметрии. Это позволит еще больше расширить возможности метода и повысить его универсальность для различных типов материалов и структур.
Будущие разработки метода будут направлены на моделирование структурных искажений и фазовых переходов, а также на симуляцию дополнительных свойств материалов, включая термические характеристики. Это открывает новые горизонты для материаловедения и физики конденсированного состояния, позволяя исследовать явления, которые ранее были недоступны для вычислительного анализа.

Изображение носит иллюстративный характер
Традиционные методы квантовой и классической механики имеют существенные ограничения при работе с крупномасштабными атомными структурами. Новый подход преодолевает эти ограничения, используя эффективный гамильтониан – математическое выражение энергии системы с различными членами связи. Ключевое преимущество метода заключается в автоматизации расчета параметров с помощью алгоритмов машинного обучения.
Вычисление параметров для эффективного гамильтониана традиционно представляло собой сложную задачу, требующую глубоких теоретических знаний и значительных вычислительных ресурсов. Разработанный метод предлагает универсальный и автоматический способ вычисления этих параметров для сложных систем, что значительно упрощает процесс моделирования.
Новая технология открывает широкие возможности для изучения мезоскопических структур в сегнетоэлектриках и диэлектриках. Это особенно важно для понимания свойств материалов на промежуточных масштабах, где квантовые эффекты все еще играют существенную роль, но структуры слишком велики для прямых квантово-механических расчетов.
Исследователи подчеркивают, что их метод является одним из самых быстрых вычислительных подходов на атомном уровне. Это позволяет ученым проектировать новые материалы с заданными свойствами, такими как сегнетоэлектрические и пьезоэлектрические характеристики, что имеет огромное значение для развития современных технологий.
В качестве следующего шага команда планирует предложить общий эффективный гамильтониан, основанный на решетчатой функции Ванье и принципах симметрии. Это позволит еще больше расширить возможности метода и повысить его универсальность для различных типов материалов и структур.
Будущие разработки метода будут направлены на моделирование структурных искажений и фазовых переходов, а также на симуляцию дополнительных свойств материалов, включая термические характеристики. Это открывает новые горизонты для материаловедения и физики конденсированного состояния, позволяя исследовать явления, которые ранее были недоступны для вычислительного анализа.