Исследовательская группа "Ultrafast & Twisted Photonics" из Института науки о свете Макса Планка (MPL) совершила прорыв в области оптических технологий, разработав инновационное полое оптическое волокно с уникальными свойствами. Новое волокно способно избирательно проводить оптические вихри в зависимости от их спиральности (хиральности). Результаты этого значимого исследования были недавно опубликованы в научном журнале ACS Photonics.

Оптические волокна играют критическую роль в современных телекоммуникациях, позволяя передавать световые сигналы на большие расстояния с минимальными потерями. Помимо этого, они усиливают взаимодействие света с веществом и позволяют манипулировать различными свойствами проводимого света. Для многих современных приложений особенно важны чистые поляризационные состояния света, которые определяют характер колебаний электромагнитного поля.
За последние десятилетия технология оптических волноводов значительно эволюционировала. Были разработаны различные типы волноводов, способные сохранять как линейную, так и круговую поляризацию света. Особенно важным достижением последних двух десятилетий стало использование света со сложными поляризационными состояниями — оптических вихрей, которые нашли применение в многочисленных областях.
Недавние разработки оптических волокон, способных проводить оптические вихри, открыли новые возможности для технологического прогресса. Среди них — использование орбитального углового момента для мультиплексирования данных, что значительно увеличивает пропускную способность оптоволоконных сетей. Кроме того, такие волокна позволяют осуществлять хиральную дискриминацию — процесс, имеющий важное значение для фармацевтической промышленности, а также контролировать движение электронов в различных системах.
Ключевым достижением ученых из MPL стало создание полого волновода с сильным спиральным дихроизмом. Это означает, что волновод пропускает оптические вихри с определенной спиральностью, одновременно ослабляя вихри с противоположной спиральностью. Такая избирательность открывает новые горизонты для применения этой технологии.
Особенно важно, что новый полый волновод может быть спроектирован для работы в спектральных областях, недоступных для других оптических систем. Более того, полость волновода может быть заполнена жидкими или газообразными средами, что позволяет изучать взаимодействие света с веществом на протяженных участках — возможность, которая была ограничена в предыдущих технологиях.
Потенциальные области применения нового волокна впечатляют своим разнообразием. Оно может использоваться для хирального зондирования, генерации вихревых мод и в оптических коммуникациях. Ожидается, что на основе этой технологии будут созданы новые устройства с исключительными возможностями дискриминации, сравнимыми или даже превосходящими возможности поляризаторов на основе кристаллов.
Таким образом, разработка первого в мире спирально дихроичного полого оптического волокна представляет собой значительный шаг вперед в области фотоники и оптических коммуникаций, открывая путь к созданию более эффективных и функциональных оптических систем будущего.

Изображение носит иллюстративный характер
Оптические волокна играют критическую роль в современных телекоммуникациях, позволяя передавать световые сигналы на большие расстояния с минимальными потерями. Помимо этого, они усиливают взаимодействие света с веществом и позволяют манипулировать различными свойствами проводимого света. Для многих современных приложений особенно важны чистые поляризационные состояния света, которые определяют характер колебаний электромагнитного поля.
За последние десятилетия технология оптических волноводов значительно эволюционировала. Были разработаны различные типы волноводов, способные сохранять как линейную, так и круговую поляризацию света. Особенно важным достижением последних двух десятилетий стало использование света со сложными поляризационными состояниями — оптических вихрей, которые нашли применение в многочисленных областях.
Недавние разработки оптических волокон, способных проводить оптические вихри, открыли новые возможности для технологического прогресса. Среди них — использование орбитального углового момента для мультиплексирования данных, что значительно увеличивает пропускную способность оптоволоконных сетей. Кроме того, такие волокна позволяют осуществлять хиральную дискриминацию — процесс, имеющий важное значение для фармацевтической промышленности, а также контролировать движение электронов в различных системах.
Ключевым достижением ученых из MPL стало создание полого волновода с сильным спиральным дихроизмом. Это означает, что волновод пропускает оптические вихри с определенной спиральностью, одновременно ослабляя вихри с противоположной спиральностью. Такая избирательность открывает новые горизонты для применения этой технологии.
Особенно важно, что новый полый волновод может быть спроектирован для работы в спектральных областях, недоступных для других оптических систем. Более того, полость волновода может быть заполнена жидкими или газообразными средами, что позволяет изучать взаимодействие света с веществом на протяженных участках — возможность, которая была ограничена в предыдущих технологиях.
Потенциальные области применения нового волокна впечатляют своим разнообразием. Оно может использоваться для хирального зондирования, генерации вихревых мод и в оптических коммуникациях. Ожидается, что на основе этой технологии будут созданы новые устройства с исключительными возможностями дискриминации, сравнимыми или даже превосходящими возможности поляризаторов на основе кристаллов.
Таким образом, разработка первого в мире спирально дихроичного полого оптического волокна представляет собой значительный шаг вперед в области фотоники и оптических коммуникаций, открывая путь к созданию более эффективных и функциональных оптических систем будущего.