Могут ли спиральные магнитные структуры изменить электронику?

Профессор Кесонг Янг из Калифорнийского университета в Сан-Диего и его группа из кафедры Aiiso Yufeng Li Family Department of Chemical and Nano Engineering Jacobs School of Engineering разработали новый метод точного моделирования сложных спиновых структур в магнитных материалах. Исследование сосредоточено на хирральных хилермагнетах, явлении, когда атомы в магнитных молекулах выстраивают свои спины по спирали.
Могут ли спиральные магнитные структуры изменить электронику?
Изображение носит иллюстративный характер

Хирральные хилермагнеты привлекают внимание благодаря своим уникальным свойствам, перспективным для создания устройств нового поколения. Двумерные спиральные структуры спинов изучаются уже более 40 лет, однако точное предсказание их характеристик оставалось сложной задачей в силу масштабов спирали.

Сложность вычислений обусловлена возможным периодом спирали до 48 нанометров, что значительно усложняет расчет взаимодействий электронов и спинов. Данный вызов потребовал разработки инновационного подхода, основанного на квантово-механических расчетах.

Методика исследования концентрируется на определении изменения суммарной энергии системы при варьировании углов поворота спинов между последовательными атомными слоями. «Вместо того чтобы моделировать всю систему в большом масштабе, мы сконцентрировались на влиянии поворота спина на общую энергию», — отмечает Юн Чен, первый автор исследования и аспирант группы профессора Янг.

Тестирование метода проводилось на группе хилермагнетов, содержащих хром, известный своими магнитными свойствами. В ходе расчетов были предсказаны критически важные параметры: волновой вектор спирали, период спирали и критическое магнитное поле, достаточное для изменения спиновой структуры.

Применение квантово-механического подхода для расчета спиновых структур открывает новые возможности в создании усовершенствованных магнитных материалов, способных задать вектор развития электронных устройств следующего поколения. Такой метод позволяет оптимизировать характеристики материалов, снизить энергопотребление и повысить эффективность работы компонентов.

Выработанная методология демонстрирует потенциал для точного прогнозирования сложных спиновых взаимодействий, что является важным шагом для разработки новых технологий в сфере электроники и магнитных устройств.

Результаты исследования были опубликованы 19 февраля в журнале Advanced Functional Materials, что подчеркивает его значимость для научного сообщества и будущих инженерных разработок.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка