Ssylka

Могут ли спиральные магнитные структуры изменить электронику?

Профессор Кесонг Янг из Калифорнийского университета в Сан-Диего и его группа из кафедры Aiiso Yufeng Li Family Department of Chemical and Nano Engineering Jacobs School of Engineering разработали новый метод точного моделирования сложных спиновых структур в магнитных материалах. Исследование сосредоточено на хирральных хилермагнетах, явлении, когда атомы в магнитных молекулах выстраивают свои спины по спирали.
Могут ли спиральные магнитные структуры изменить электронику?
Изображение носит иллюстративный характер

Хирральные хилермагнеты привлекают внимание благодаря своим уникальным свойствам, перспективным для создания устройств нового поколения. Двумерные спиральные структуры спинов изучаются уже более 40 лет, однако точное предсказание их характеристик оставалось сложной задачей в силу масштабов спирали.

Сложность вычислений обусловлена возможным периодом спирали до 48 нанометров, что значительно усложняет расчет взаимодействий электронов и спинов. Данный вызов потребовал разработки инновационного подхода, основанного на квантово-механических расчетах.

Методика исследования концентрируется на определении изменения суммарной энергии системы при варьировании углов поворота спинов между последовательными атомными слоями. «Вместо того чтобы моделировать всю систему в большом масштабе, мы сконцентрировались на влиянии поворота спина на общую энергию», — отмечает Юн Чен, первый автор исследования и аспирант группы профессора Янг.

Тестирование метода проводилось на группе хилермагнетов, содержащих хром, известный своими магнитными свойствами. В ходе расчетов были предсказаны критически важные параметры: волновой вектор спирали, период спирали и критическое магнитное поле, достаточное для изменения спиновой структуры.

Применение квантово-механического подхода для расчета спиновых структур открывает новые возможности в создании усовершенствованных магнитных материалов, способных задать вектор развития электронных устройств следующего поколения. Такой метод позволяет оптимизировать характеристики материалов, снизить энергопотребление и повысить эффективность работы компонентов.

Выработанная методология демонстрирует потенциал для точного прогнозирования сложных спиновых взаимодействий, что является важным шагом для разработки новых технологий в сфере электроники и магнитных устройств.

Результаты исследования были опубликованы 19 февраля в журнале Advanced Functional Materials, что подчеркивает его значимость для научного сообщества и будущих инженерных разработок.


Новое на сайте

18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI?