Ssylka

Могут ли спиральные магнитные структуры изменить электронику?

Профессор Кесонг Янг из Калифорнийского университета в Сан-Диего и его группа из кафедры Aiiso Yufeng Li Family Department of Chemical and Nano Engineering Jacobs School of Engineering разработали новый метод точного моделирования сложных спиновых структур в магнитных материалах. Исследование сосредоточено на хирральных хилермагнетах, явлении, когда атомы в магнитных молекулах выстраивают свои спины по спирали.
Могут ли спиральные магнитные структуры изменить электронику?
Изображение носит иллюстративный характер

Хирральные хилермагнеты привлекают внимание благодаря своим уникальным свойствам, перспективным для создания устройств нового поколения. Двумерные спиральные структуры спинов изучаются уже более 40 лет, однако точное предсказание их характеристик оставалось сложной задачей в силу масштабов спирали.

Сложность вычислений обусловлена возможным периодом спирали до 48 нанометров, что значительно усложняет расчет взаимодействий электронов и спинов. Данный вызов потребовал разработки инновационного подхода, основанного на квантово-механических расчетах.

Методика исследования концентрируется на определении изменения суммарной энергии системы при варьировании углов поворота спинов между последовательными атомными слоями. «Вместо того чтобы моделировать всю систему в большом масштабе, мы сконцентрировались на влиянии поворота спина на общую энергию», — отмечает Юн Чен, первый автор исследования и аспирант группы профессора Янг.

Тестирование метода проводилось на группе хилермагнетов, содержащих хром, известный своими магнитными свойствами. В ходе расчетов были предсказаны критически важные параметры: волновой вектор спирали, период спирали и критическое магнитное поле, достаточное для изменения спиновой структуры.

Применение квантово-механического подхода для расчета спиновых структур открывает новые возможности в создании усовершенствованных магнитных материалов, способных задать вектор развития электронных устройств следующего поколения. Такой метод позволяет оптимизировать характеристики материалов, снизить энергопотребление и повысить эффективность работы компонентов.

Выработанная методология демонстрирует потенциал для точного прогнозирования сложных спиновых взаимодействий, что является важным шагом для разработки новых технологий в сфере электроники и магнитных устройств.

Результаты исследования были опубликованы 19 февраля в журнале Advanced Functional Materials, что подчеркивает его значимость для научного сообщества и будущих инженерных разработок.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года