Ssylka

Ускорение океанских симуляций с помощью ИИ без потери точности

Традиционные методы моделирования динамики жидкостей, такие как методы частиц, требуют значительных вычислительных мощностей и времени. Точное прогнозирование поведения жидкостей является критически важной, но сложной задачей. Существующие модели искусственного интеллекта могут давать хорошие результаты для конкретных задач, однако часто испытывают трудности с обобщением при применении к различным условиям.
Ускорение океанских симуляций с помощью ИИ без потери точности
Изображение носит иллюстративный характер

Исследователи из Высшей школы инженерии Осакского столичного университета разработали новую суррогатную модель для симуляции жидкостей на основе машинного обучения. В основе решения лежит технология глубокого обучения, в частности, графовые нейронные сети (GNN). Цель разработки — обеспечить стабильно высокую скорость и точность моделирования в разнообразных условиях.

Ведущим автором исследования выступил доцент Такэфуми Хигаки из Высшей школы инженерии Осакского столичного университета. Его работа направлена на преодоление ограничений существующих методов симуляции.

В ходе исследования была разработана новая суррогатная модель с использованием графовых нейронных сетей. Ученые сравнили различные условия обучения, чтобы выявить факторы, необходимые для высокоточных вычислений. Адаптивность модели систематически оценивалась применительно к различным скоростям симуляции (размерам временного шага) и разнообразным типам движений и поведений жидкости.

Ключевым результатом стало подтверждение того, что новая модель сохраняет тот же уровень точности, что и традиционные симуляции на основе частиц. При этом вычислительное время значительно сокращается: с примерно 45 минут до всего трех минут.

Модель продемонстрировала высокие возможности обобщения, эффективно работая с различными типами поведения жидкости и сценариями. Таким образом, предложенное решение успешно балансирует между точностью вычислений и их эффективностью.

Эта разработка знаменует собой шаг вперед в области высокопроизводительного моделирования жидкостей. Она предлагает масштабируемое и обобщаемое решение для сложных гидродинамических задач.

Внедрение модели способно ускорить процесс проектирования судов и морских энергетических систем. Также появляется возможность анализа поведения жидкости в реальном времени, что критически важно для повышения эффективности систем океанической энергетики.

Потенциальные области применения включают морскую энергетику (включая волновую и приливную), проектирование судов, морских сооружений и конструкций, а также мониторинг океана в реальном времени и максимизацию эффективности энергетических систем океана.

Результаты исследования опубликованы в научном журнале Applied Ocean Research.

Разработки в области искусственного интеллекта приводят к значительным изменениям во многих сферах. Исследования гидродинамики выигрывают от использования суррогатных моделей на базе ИИ, которые упрощают и ускоряют симуляции. Методы частиц, распространенный подход к моделированию потоков жидкости, известны своей вычислительной затратностью. Глубокое обучение и, в частности, графовые нейронные сети (GNN), использованные в данной работе, представляют собой мощные инструменты для создания эффективных суррогатных моделей.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года