Ускорение океанских симуляций с помощью ИИ без потери точности

Традиционные методы моделирования динамики жидкостей, такие как методы частиц, требуют значительных вычислительных мощностей и времени. Точное прогнозирование поведения жидкостей является критически важной, но сложной задачей. Существующие модели искусственного интеллекта могут давать хорошие результаты для конкретных задач, однако часто испытывают трудности с обобщением при применении к различным условиям.
Ускорение океанских симуляций с помощью ИИ без потери точности
Изображение носит иллюстративный характер

Исследователи из Высшей школы инженерии Осакского столичного университета разработали новую суррогатную модель для симуляции жидкостей на основе машинного обучения. В основе решения лежит технология глубокого обучения, в частности, графовые нейронные сети (GNN). Цель разработки — обеспечить стабильно высокую скорость и точность моделирования в разнообразных условиях.

Ведущим автором исследования выступил доцент Такэфуми Хигаки из Высшей школы инженерии Осакского столичного университета. Его работа направлена на преодоление ограничений существующих методов симуляции.

В ходе исследования была разработана новая суррогатная модель с использованием графовых нейронных сетей. Ученые сравнили различные условия обучения, чтобы выявить факторы, необходимые для высокоточных вычислений. Адаптивность модели систематически оценивалась применительно к различным скоростям симуляции (размерам временного шага) и разнообразным типам движений и поведений жидкости.

Ключевым результатом стало подтверждение того, что новая модель сохраняет тот же уровень точности, что и традиционные симуляции на основе частиц. При этом вычислительное время значительно сокращается: с примерно 45 минут до всего трех минут.

Модель продемонстрировала высокие возможности обобщения, эффективно работая с различными типами поведения жидкости и сценариями. Таким образом, предложенное решение успешно балансирует между точностью вычислений и их эффективностью.

Эта разработка знаменует собой шаг вперед в области высокопроизводительного моделирования жидкостей. Она предлагает масштабируемое и обобщаемое решение для сложных гидродинамических задач.

Внедрение модели способно ускорить процесс проектирования судов и морских энергетических систем. Также появляется возможность анализа поведения жидкости в реальном времени, что критически важно для повышения эффективности систем океанической энергетики.

Потенциальные области применения включают морскую энергетику (включая волновую и приливную), проектирование судов, морских сооружений и конструкций, а также мониторинг океана в реальном времени и максимизацию эффективности энергетических систем океана.

Результаты исследования опубликованы в научном журнале Applied Ocean Research.

Разработки в области искусственного интеллекта приводят к значительным изменениям во многих сферах. Исследования гидродинамики выигрывают от использования суррогатных моделей на базе ИИ, которые упрощают и ускоряют симуляции. Методы частиц, распространенный подход к моделированию потоков жидкости, известны своей вычислительной затратностью. Глубокое обучение и, в частности, графовые нейронные сети (GNN), использованные в данной работе, представляют собой мощные инструменты для создания эффективных суррогатных моделей.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка