Традиционные методы моделирования динамики жидкостей, такие как методы частиц, требуют значительных вычислительных мощностей и времени. Точное прогнозирование поведения жидкостей является критически важной, но сложной задачей. Существующие модели искусственного интеллекта могут давать хорошие результаты для конкретных задач, однако часто испытывают трудности с обобщением при применении к различным условиям.

Исследователи из Высшей школы инженерии Осакского столичного университета разработали новую суррогатную модель для симуляции жидкостей на основе машинного обучения. В основе решения лежит технология глубокого обучения, в частности, графовые нейронные сети (GNN). Цель разработки — обеспечить стабильно высокую скорость и точность моделирования в разнообразных условиях.
Ведущим автором исследования выступил доцент Такэфуми Хигаки из Высшей школы инженерии Осакского столичного университета. Его работа направлена на преодоление ограничений существующих методов симуляции.
В ходе исследования была разработана новая суррогатная модель с использованием графовых нейронных сетей. Ученые сравнили различные условия обучения, чтобы выявить факторы, необходимые для высокоточных вычислений. Адаптивность модели систематически оценивалась применительно к различным скоростям симуляции (размерам временного шага) и разнообразным типам движений и поведений жидкости.
Ключевым результатом стало подтверждение того, что новая модель сохраняет тот же уровень точности, что и традиционные симуляции на основе частиц. При этом вычислительное время значительно сокращается: с примерно 45 минут до всего трех минут.
Модель продемонстрировала высокие возможности обобщения, эффективно работая с различными типами поведения жидкости и сценариями. Таким образом, предложенное решение успешно балансирует между точностью вычислений и их эффективностью.
Эта разработка знаменует собой шаг вперед в области высокопроизводительного моделирования жидкостей. Она предлагает масштабируемое и обобщаемое решение для сложных гидродинамических задач.
Внедрение модели способно ускорить процесс проектирования судов и морских энергетических систем. Также появляется возможность анализа поведения жидкости в реальном времени, что критически важно для повышения эффективности систем океанической энергетики.
Потенциальные области применения включают морскую энергетику (включая волновую и приливную), проектирование судов, морских сооружений и конструкций, а также мониторинг океана в реальном времени и максимизацию эффективности энергетических систем океана.
Результаты исследования опубликованы в научном журнале Applied Ocean Research.
Разработки в области искусственного интеллекта приводят к значительным изменениям во многих сферах. Исследования гидродинамики выигрывают от использования суррогатных моделей на базе ИИ, которые упрощают и ускоряют симуляции. Методы частиц, распространенный подход к моделированию потоков жидкости, известны своей вычислительной затратностью. Глубокое обучение и, в частности, графовые нейронные сети (GNN), использованные в данной работе, представляют собой мощные инструменты для создания эффективных суррогатных моделей.

Изображение носит иллюстративный характер
Исследователи из Высшей школы инженерии Осакского столичного университета разработали новую суррогатную модель для симуляции жидкостей на основе машинного обучения. В основе решения лежит технология глубокого обучения, в частности, графовые нейронные сети (GNN). Цель разработки — обеспечить стабильно высокую скорость и точность моделирования в разнообразных условиях.
Ведущим автором исследования выступил доцент Такэфуми Хигаки из Высшей школы инженерии Осакского столичного университета. Его работа направлена на преодоление ограничений существующих методов симуляции.
В ходе исследования была разработана новая суррогатная модель с использованием графовых нейронных сетей. Ученые сравнили различные условия обучения, чтобы выявить факторы, необходимые для высокоточных вычислений. Адаптивность модели систематически оценивалась применительно к различным скоростям симуляции (размерам временного шага) и разнообразным типам движений и поведений жидкости.
Ключевым результатом стало подтверждение того, что новая модель сохраняет тот же уровень точности, что и традиционные симуляции на основе частиц. При этом вычислительное время значительно сокращается: с примерно 45 минут до всего трех минут.
Модель продемонстрировала высокие возможности обобщения, эффективно работая с различными типами поведения жидкости и сценариями. Таким образом, предложенное решение успешно балансирует между точностью вычислений и их эффективностью.
Эта разработка знаменует собой шаг вперед в области высокопроизводительного моделирования жидкостей. Она предлагает масштабируемое и обобщаемое решение для сложных гидродинамических задач.
Внедрение модели способно ускорить процесс проектирования судов и морских энергетических систем. Также появляется возможность анализа поведения жидкости в реальном времени, что критически важно для повышения эффективности систем океанической энергетики.
Потенциальные области применения включают морскую энергетику (включая волновую и приливную), проектирование судов, морских сооружений и конструкций, а также мониторинг океана в реальном времени и максимизацию эффективности энергетических систем океана.
Результаты исследования опубликованы в научном журнале Applied Ocean Research.
Разработки в области искусственного интеллекта приводят к значительным изменениям во многих сферах. Исследования гидродинамики выигрывают от использования суррогатных моделей на базе ИИ, которые упрощают и ускоряют симуляции. Методы частиц, распространенный подход к моделированию потоков жидкости, известны своей вычислительной затратностью. Глубокое обучение и, в частности, графовые нейронные сети (GNN), использованные в данной работе, представляют собой мощные инструменты для создания эффективных суррогатных моделей.