Инженеры из Университета Фудань успешно разработали, изготовили и запустили функциональный 32-битный микропроцессор, используя дисульфид молибдена (MoS2) в качестве полупроводникового компонента вместо традиционного кремния. Результаты этого прорывного исследования опубликованы в престижном научном журнале Nature.
Создание этого процессора стало ответом на существующие ограничения кремниевой технологии, в частности, трудности с дальнейшим уменьшением толщины кремниевых чипов. Поиск альтернативных материалов осложнялся тем, что многие кандидаты, такие как графен, являются проводниками, а не полупроводниками, необходимыми для создания транзисторов.
Выбор пал на дисульфид молибдена (MoS2) — материал, представляющий собой почти двумерный полупроводник. В процессе изготовления использовались листы MoS2 толщиной в одну молекулу. Важно отметить, что структура материала не является идеально плоской: листы соединяются под углом, образуя слегка зигзагообразную поверхность. Эти листы были размещены на подложке из сапфира.
Из-за чрезвычайной тонкости слоев MoS2 традиционный метод легирования, применяемый в кремниевой технологии, оказался неприменим. Вместо этого инженеры применили метод непосредственного соединения транзисторов проводами. Эти соединения также использовались для точной настройки пороговых напряжений транзисторов.
Для реализации логических функций в конструкцию были добавлены логические вентили, позволившие создать инверторы, работающие в режиме обеднения (depletion-mode inverters). Это стало ключевым шагом для построения полноценной процессорной архитектуры.
Созданный процессор основан на 32-битной архитектуре с открытым набором команд RISC-V. Он содержит 5900 транзисторов. Тактовая частота процессора определяется длиной самого длинного пути сигнала между транзисторами и находится в килогерцовом (kHz) диапазоне.
Несмотря на новизну технологии, процесс изготовления продемонстрировал высокий выход годных кристаллов. Средний общий выход составил приблизительно 99,9%, а выход на уровне отдельных чипов достиг 99,8%. Функциональность процессора была подтверждена успешным выполнением операции сложения двух 32-битных чисел.
Процессор полностью способен выполнять весь набор инструкций 32-битной версии RISC-V. Команда разработчиков предполагает, что это, вероятно, самый сложный микропроцессор, когда-либо созданный без использования кремния. Хотя технология еще не готова для массового применения в реальных устройствах, она открывает перспективы для нишевых приложений, особенно там, где требуется работа при экстремально низком напряжении.
Создание этого процессора стало ответом на существующие ограничения кремниевой технологии, в частности, трудности с дальнейшим уменьшением толщины кремниевых чипов. Поиск альтернативных материалов осложнялся тем, что многие кандидаты, такие как графен, являются проводниками, а не полупроводниками, необходимыми для создания транзисторов.
Выбор пал на дисульфид молибдена (MoS2) — материал, представляющий собой почти двумерный полупроводник. В процессе изготовления использовались листы MoS2 толщиной в одну молекулу. Важно отметить, что структура материала не является идеально плоской: листы соединяются под углом, образуя слегка зигзагообразную поверхность. Эти листы были размещены на подложке из сапфира.
Из-за чрезвычайной тонкости слоев MoS2 традиционный метод легирования, применяемый в кремниевой технологии, оказался неприменим. Вместо этого инженеры применили метод непосредственного соединения транзисторов проводами. Эти соединения также использовались для точной настройки пороговых напряжений транзисторов.
Для реализации логических функций в конструкцию были добавлены логические вентили, позволившие создать инверторы, работающие в режиме обеднения (depletion-mode inverters). Это стало ключевым шагом для построения полноценной процессорной архитектуры.
Созданный процессор основан на 32-битной архитектуре с открытым набором команд RISC-V. Он содержит 5900 транзисторов. Тактовая частота процессора определяется длиной самого длинного пути сигнала между транзисторами и находится в килогерцовом (kHz) диапазоне.
Несмотря на новизну технологии, процесс изготовления продемонстрировал высокий выход годных кристаллов. Средний общий выход составил приблизительно 99,9%, а выход на уровне отдельных чипов достиг 99,8%. Функциональность процессора была подтверждена успешным выполнением операции сложения двух 32-битных чисел.
Процессор полностью способен выполнять весь набор инструкций 32-битной версии RISC-V. Команда разработчиков предполагает, что это, вероятно, самый сложный микропроцессор, когда-либо созданный без использования кремния. Хотя технология еще не готова для массового применения в реальных устройствах, она открывает перспективы для нишевых приложений, особенно там, где требуется работа при экстремально низком напряжении.