Исследование, опубликованное в Nano Letters, демонстрирует метод измерения быстротечных колебаний магнитных свойств с использованием единичного кубита как квантового сенсора. Применение этого подхода позволило детектировать флуктуации спина в тонкомагнитной пленке, подвергавшейся фазовому переходу при изменении температуры.

Проводимые измерения выявили четкую взаимосвязь между локальными флуктуациями спина и коллективной магнитной динамикой, особенно вблизи критической температуры. Пошаговые изменения магнитных свойств резонируют с характерными фазовыми переходами, что открывает новые возможности для контроля физических состояний материалов.
Сканирующий микроскоп с NV-центром, функционирующий как высокочувствительный сенсор, был применён для детального изучения магнитных флуктуаций. NV-центр представляет собой атомный дефект алмаза, где атом азота замещает углерод с последующим образованием соседней вакансии, что обеспечивает уникальные квантовые спиновые состояния для регистрации как статических, так и динамических магнитных полей.
Работа с тонкими магнитными пленками имеет решающее значение для современных технологий хранения данных, создания датчиков и разработки электронных устройств, функционирующих при комнатной температуре. Точная манипуляция магнитными состояниями в таких пленках является залогом повышения эффективности цифровых и квантовых вычислений.
Исследователь Ben Lawrie из Отдела материаловедения и технологии Центра нанофазных материалов в Oak Ridge National Laboratory отметил: «NV-центр функционирует как квантовый бит и высокочувствительный сенсор, который мы перемещали по поверхности тонкой пленки для измерения температурно-зависимых изменений магнитных свойств и флуктуаций спина, недоступных другими методами». Его слова подчёркивают потенциал управления взаимодействием спинов с окружающей средой для моделирования сложных квантовых процессов.
Полученные данные открывают перспективы развития спинтроники и квантовых вычислений. Глубокое понимание взаимосвязи между локальными флуктуациями и глобальными магнитными состояниями позволяет использовать квантовые ресурсы для реализации принципиально новых решений в обработке информации.
Комбинирование опыта в квантовой информации и физике конденсированного состояния способствует разработке новых квантовых устройств с функционалом в сетевых технологиях, датчиках и вычислительной технике, что задаёт вектор развития современной науки и техники.

Изображение носит иллюстративный характер
Проводимые измерения выявили четкую взаимосвязь между локальными флуктуациями спина и коллективной магнитной динамикой, особенно вблизи критической температуры. Пошаговые изменения магнитных свойств резонируют с характерными фазовыми переходами, что открывает новые возможности для контроля физических состояний материалов.
Сканирующий микроскоп с NV-центром, функционирующий как высокочувствительный сенсор, был применён для детального изучения магнитных флуктуаций. NV-центр представляет собой атомный дефект алмаза, где атом азота замещает углерод с последующим образованием соседней вакансии, что обеспечивает уникальные квантовые спиновые состояния для регистрации как статических, так и динамических магнитных полей.
Работа с тонкими магнитными пленками имеет решающее значение для современных технологий хранения данных, создания датчиков и разработки электронных устройств, функционирующих при комнатной температуре. Точная манипуляция магнитными состояниями в таких пленках является залогом повышения эффективности цифровых и квантовых вычислений.
Исследователь Ben Lawrie из Отдела материаловедения и технологии Центра нанофазных материалов в Oak Ridge National Laboratory отметил: «NV-центр функционирует как квантовый бит и высокочувствительный сенсор, который мы перемещали по поверхности тонкой пленки для измерения температурно-зависимых изменений магнитных свойств и флуктуаций спина, недоступных другими методами». Его слова подчёркивают потенциал управления взаимодействием спинов с окружающей средой для моделирования сложных квантовых процессов.
Полученные данные открывают перспективы развития спинтроники и квантовых вычислений. Глубокое понимание взаимосвязи между локальными флуктуациями и глобальными магнитными состояниями позволяет использовать квантовые ресурсы для реализации принципиально новых решений в обработке информации.
Комбинирование опыта в квантовой информации и физике конденсированного состояния способствует разработке новых квантовых устройств с функционалом в сетевых технологиях, датчиках и вычислительной технике, что задаёт вектор развития современной науки и техники.