Ssylka

Однокубитное сенсирование меняет представление о квантовых материалах

Исследование, опубликованное в Nano Letters, демонстрирует метод измерения быстротечных колебаний магнитных свойств с использованием единичного кубита как квантового сенсора. Применение этого подхода позволило детектировать флуктуации спина в тонкомагнитной пленке, подвергавшейся фазовому переходу при изменении температуры.
Однокубитное сенсирование меняет представление о квантовых материалах
Изображение носит иллюстративный характер

Проводимые измерения выявили четкую взаимосвязь между локальными флуктуациями спина и коллективной магнитной динамикой, особенно вблизи критической температуры. Пошаговые изменения магнитных свойств резонируют с характерными фазовыми переходами, что открывает новые возможности для контроля физических состояний материалов.

Сканирующий микроскоп с NV-центром, функционирующий как высокочувствительный сенсор, был применён для детального изучения магнитных флуктуаций. NV-центр представляет собой атомный дефект алмаза, где атом азота замещает углерод с последующим образованием соседней вакансии, что обеспечивает уникальные квантовые спиновые состояния для регистрации как статических, так и динамических магнитных полей.

Работа с тонкими магнитными пленками имеет решающее значение для современных технологий хранения данных, создания датчиков и разработки электронных устройств, функционирующих при комнатной температуре. Точная манипуляция магнитными состояниями в таких пленках является залогом повышения эффективности цифровых и квантовых вычислений.

Исследователь Ben Lawrie из Отдела материаловедения и технологии Центра нанофазных материалов в Oak Ridge National Laboratory отметил: «NV-центр функционирует как квантовый бит и высокочувствительный сенсор, который мы перемещали по поверхности тонкой пленки для измерения температурно-зависимых изменений магнитных свойств и флуктуаций спина, недоступных другими методами». Его слова подчёркивают потенциал управления взаимодействием спинов с окружающей средой для моделирования сложных квантовых процессов.

Полученные данные открывают перспективы развития спинтроники и квантовых вычислений. Глубокое понимание взаимосвязи между локальными флуктуациями и глобальными магнитными состояниями позволяет использовать квантовые ресурсы для реализации принципиально новых решений в обработке информации.

Комбинирование опыта в квантовой информации и физике конденсированного состояния способствует разработке новых квантовых устройств с функционалом в сетевых технологиях, датчиках и вычислительной технике, что задаёт вектор развития современной науки и техники.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года