Ssylka

Однокубитное сенсирование меняет представление о квантовых материалах

Исследование, опубликованное в Nano Letters, демонстрирует метод измерения быстротечных колебаний магнитных свойств с использованием единичного кубита как квантового сенсора. Применение этого подхода позволило детектировать флуктуации спина в тонкомагнитной пленке, подвергавшейся фазовому переходу при изменении температуры.
Однокубитное сенсирование меняет представление о квантовых материалах
Изображение носит иллюстративный характер

Проводимые измерения выявили четкую взаимосвязь между локальными флуктуациями спина и коллективной магнитной динамикой, особенно вблизи критической температуры. Пошаговые изменения магнитных свойств резонируют с характерными фазовыми переходами, что открывает новые возможности для контроля физических состояний материалов.

Сканирующий микроскоп с NV-центром, функционирующий как высокочувствительный сенсор, был применён для детального изучения магнитных флуктуаций. NV-центр представляет собой атомный дефект алмаза, где атом азота замещает углерод с последующим образованием соседней вакансии, что обеспечивает уникальные квантовые спиновые состояния для регистрации как статических, так и динамических магнитных полей.

Работа с тонкими магнитными пленками имеет решающее значение для современных технологий хранения данных, создания датчиков и разработки электронных устройств, функционирующих при комнатной температуре. Точная манипуляция магнитными состояниями в таких пленках является залогом повышения эффективности цифровых и квантовых вычислений.

Исследователь Ben Lawrie из Отдела материаловедения и технологии Центра нанофазных материалов в Oak Ridge National Laboratory отметил: «NV-центр функционирует как квантовый бит и высокочувствительный сенсор, который мы перемещали по поверхности тонкой пленки для измерения температурно-зависимых изменений магнитных свойств и флуктуаций спина, недоступных другими методами». Его слова подчёркивают потенциал управления взаимодействием спинов с окружающей средой для моделирования сложных квантовых процессов.

Полученные данные открывают перспективы развития спинтроники и квантовых вычислений. Глубокое понимание взаимосвязи между локальными флуктуациями и глобальными магнитными состояниями позволяет использовать квантовые ресурсы для реализации принципиально новых решений в обработке информации.

Комбинирование опыта в квантовой информации и физике конденсированного состояния способствует разработке новых квантовых устройств с функционалом в сетевых технологиях, датчиках и вычислительной технике, что задаёт вектор развития современной науки и техники.


Новое на сайте

18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли 18592Каким образом блокчейн-транзакции стали новым инструментом для кражи криптовалюты? 18591Что скрывается за ростом прибыли The Walt Disney Company? 18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI? 18589Как Operation Endgame нанесла сокрушительный удар по глобальной киберпреступности? 18588Кибервойна на скорости машин: почему защита должна стать автоматической к 2026 году 18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными?