Ssylka

Как искусственный интеллект меняет молекулярный дизайн с помощью оценки неопределённости?

Исследователи из Национального Тайваньского университета продемонстрировали, что включение оценки неопределённости (Uncertainty Quantification, UQ) в графовые нейронные сети (Graph Neural Networks, GNN) значительно повышает эффективность и устойчивость оптимизации молекул. Их работа опубликована в журнале Nature Communications.
Как искусственный интеллект меняет молекулярный дизайн с помощью оценки неопределённости?
Изображение носит иллюстративный характер

Ключевой задачей исследования стало интегрирование моделей, учитывающих неопределённость, в процессы компьютерного молекулярного дизайна (CAMD), чтобы улучшить принятие решений при поиске новых материалов и лекарственных средств. Учёные систематически проверили, способны ли усовершенствованные с помощью UQ нейронные сети направленного обмена сообщениями (Directed Message Passing Neural Networks, D-MPNNs) эффективно управлять оптимизацией в открытых и обширных химических пространствах.

Типичные алгоритмы машинного обучения плохо справляются с предсказаниями для молекул, которые не встречались в обучающих выборках, что особенно критично для реальных задач, где химическое пространство практически безгранично и мало изучено. Для преодоления этой проблемы исследователи объединили D-MPNN с генетическими алгоритмами, что позволяет проводить гибкую оптимизацию молекул без необходимости ограничиваться заранее заданными библиотеками соединений.

В ходе работы были протестированы различные стратегии оптимизации, учитывающие неопределённость, на 16 разнообразных задачах. Эти задачи взяты с платформ Tartarus и GuacaMol, отражающих актуальные вызовы в области органической электроники, реакционной инженерии и разработки лекарств. Особое внимание уделялось многоцелевым сценариям, где необходимо одновременно балансировать между конкурирующими молекулярными свойствами.

Среди всех протестированных подходов наилучшие результаты показал метод Probabilistic Improvement Optimization (PIO). Этот метод использует количественную оценку неопределённости для оценки вероятности того, что кандидаты отвечают заданным критериям дизайна. PIO позволяет избегать ненадёжных экстраполяций и направлять поиск в области, наиболее перспективные с химической точки зрения.

Профессор И-Пей Ли, ведущий автор работы, отмечает: «Химический дизайн часто требует поиска баланса между множеством конкурирующих целей в огромных и неопределённых пространствах поиска. Интеграция оценки неопределённости в оптимизацию, управляемую машинным обучением, даёт нам фундаментальный способ ориентироваться в этой сложности и повышает надёжность предлагаемых искусственным интеллектом решений».

Результаты исследования формируют прочную основу для внедрения методов молекулярного поиска, способных учитывать неопределённость. Это открывает путь к более надёжным и эффективным системам искусственного интеллекта для задач химии и материаловедения.

В работе использовались современные методы: оценка неопределённости, графовые нейронные сети, D-MPNN, генетические алгоритмы и стратегия PIO. Эксперименты охватили 16 задач с платформ Tartarus и GuacaMol, с акцентом на реальные приложения в электронике, инженерии и фармацевтике.


Новое на сайте

18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года 18869Реконструкция черепа возрастом 1,5 миллиона лет меняет представление об эволюции Homo... 18868Почему декабрь — идеальное время для навигации по сокровищам звездного неба северного...