Ssylka

Может ли жертвенная структура ускорить восстановление гидрогелей?

Исследование, опубликованное онлайн 26 февраля в журнале Nature Materials, представляет принципиально новую технологию создания гидрогелей с самоисцеляющимися свойствами. Работа проведена учёными из Hokkaido University и Duke University, объединившими усилия для решения задачи быстрого восстановления материала при повреждениях.
Может ли жертвенная структура ускорить восстановление гидрогелей?
Изображение носит иллюстративный характер

Гидрогели представляют собой сетчатые полимеры, способные впитывать и удерживать значительное количество воды. Такие материалы широко используются для изготовления мягких контактных линз, создания жевательных сладостей и имитации хрящевой ткани, где крайне важна балансировка между гибкостью и прочностью.

Основополагающие разработки в области двойных сетевых гидрогелей начаты профессором Jian Ping Gong из Hokkaido University еще в 2003 году. Тогда концепция жесткого внутреннего каркаса, интегрированного в мягкую матрицу, позволила значительно усилить материал, аналогично тому, как внутри автомобильной шины располагается крепкий армирующий слой.

Однако традиционные двойные сетевые гидрогели теряют способность к восстановлению после разрушения внутренней структуры. Профессор Michael Rubinstein из Duke University приводит сравнение с шинами, где утрата внутреннего армирующего слоя приводит к необратимой поломке, аналогично несущим конструкциям гидрогелей.

Новая методика предусматривает внедрение жертвенных сегментов, специально разработанных для быстрого разрушения под нагрузкой. При их обрыве образуются свободные радикалы, которые вступают в реакцию с окружающими бифункциональными и многофункциональными мономерами.

Химический процесс заключается в формировании новых полимерных цепей и перекрестных связей в месте повреждения, что приводит к появлению обновленной и усиленной сетки. Таким образом, созданный интерфейс не только устраняет дефект, но и предупреждает дальнейшее распространение трещины.

Демонстрационные испытания показали, что гидрогель способен компенсировать рост трещин со скоростью около двух дюймов в минуту. При этом данный показатель оптимален для условий, где важнее устойчивость к постепенному износу, нежели стремительное разрушение материала.

Применение технологии рассматривается для соединений, несущих значительные нагрузки, а также для суставов в робототехнике и тканей человека. Инновационный подход обещает значительно продлить срок службы таких конструкций, обеспечивая их самовосстановление при накоплении микроповреждений.

Ведутся работы по созданию вычислительной модели, позволяющей симулировать внутренние процессы заживления гидрогеля. Исследователи из Duke University уже нацелены на совершенствование метода в рамках разработки «версии 2.0», что обещает еще более быстрое и надежное восстановление материала.


Новое на сайте

15336Ханна Ритчи | Климатические технологии и как ИИ может помочь решить большие проблемы 15335Триумф хореографии: дебют эбони Кларк с «золушкой» отмечен престижной наградой 15334Тайны брачных ритуалов крупнейшей рыбы мира: загадка китовых акул у берегов острова... 15333Первое островное выставление: искусство Макса Корбетта на Джерси 15332Почему в честь Бенджамина Зефаниаха посадили лес и прочитали 65 стихов? 15331Вкус, который может подвести: отзыв печенья из-за "прогорклого вкуса" 15330Почему смертельные волны на восточном побережье Австралии стали причиной трагедии? 15329Почему месть не решает проблем: трагическая история актера из "Aano Qabiil" 15328Ушедшая звезда: жизнь и наследие Клода роджерс 15327Как театр помогает бороться с одиночеством в самом одиноком районе Лондона? 15326Открытие нового цвета: 'оло' и его значение 15325Космическое наследие: как частные компании изменяют будущее освоения вселенной 15324Плоская вискача: как этот грызун строит подземные города и почему он рекордсмен по... 15323Как возрождается исторический театр Эпштейна? 15322Новая солнечная электростанция в Оксфордшире обеспечит энергией 11 000 домов: как удалось...