Метод суперразрешающей микроскопии продолжает эволюционировать благодаря замене традиционных флуорофоров на нанографены, что позволяет значительно увеличить время наблюдения за микроскопическими объектами.

В 2014 году Нобелевская премия по химии была присуждена за разработку методов супермолекулярного флуоресцентного микроскопирования, в число которых входит метод STED, преодолевший классический дифракционный предел, установленный более 200 нм Эрнстом Аббе.
STED-микроскопия демонстрирует разрешение, превосходящее обычные методы в 10 раз. При этом малые флуоресцентные молекулы активируются лазерным излучением, а вторичный лазер с формой «пончика» выключает свечение по периферии, оставляя включённым лишь центральный участок для создания детализированного изображения.
Ключевая проблема традиционного подхода заключается в том, что обычные флуорофоры сгорают под длительным освещением, что приводит к фотобличингу и ограничивает возможность наблюдения долгосрочных процессов.
Инновационное решение было предложено исследователями Института Макса Планка: ведущей специалисткой стала Сяомин Лю (Xiaomin Liu) из MPI для исследований полимеров, при активном сотрудничестве с Акимитсу Нарита и Рёта Кабе из Окинавского института науки и технологий. Замена флуорофоров на нанографены позволяет не только устранить эффект тускнения, но и использовать тот же «пончиковый» лазер как для деактивации, так и для восстановления флуоресценции.
Данное достижение существенно расширяет возможности наблюдения над микроскопическими объектами как в биологических исследованиях, где можно проводить длительный мониторинг клеточных процессов, так и в материаловедении для изучения свойств наноматериалов. Высокий фотонный поток нанографенов гарантирует стабильность изображения даже при продолжительном сканировании.
Публикация результатов исследования в журнале Nature Communications подтверждает значимость метода, позволяющего преодолеть основное ограничение традиционной STED-микроскопии и сделать процесс наблюдения более долговременным.
Применение нанографенов открывает новые горизонты для изучения динамических процессов, ранее недоступных из-за ограничений классического подхода, что обещает дальнейшие успехи в области биологии и материаловедения.

Изображение носит иллюстративный характер
В 2014 году Нобелевская премия по химии была присуждена за разработку методов супермолекулярного флуоресцентного микроскопирования, в число которых входит метод STED, преодолевший классический дифракционный предел, установленный более 200 нм Эрнстом Аббе.
STED-микроскопия демонстрирует разрешение, превосходящее обычные методы в 10 раз. При этом малые флуоресцентные молекулы активируются лазерным излучением, а вторичный лазер с формой «пончика» выключает свечение по периферии, оставляя включённым лишь центральный участок для создания детализированного изображения.
Ключевая проблема традиционного подхода заключается в том, что обычные флуорофоры сгорают под длительным освещением, что приводит к фотобличингу и ограничивает возможность наблюдения долгосрочных процессов.
Инновационное решение было предложено исследователями Института Макса Планка: ведущей специалисткой стала Сяомин Лю (Xiaomin Liu) из MPI для исследований полимеров, при активном сотрудничестве с Акимитсу Нарита и Рёта Кабе из Окинавского института науки и технологий. Замена флуорофоров на нанографены позволяет не только устранить эффект тускнения, но и использовать тот же «пончиковый» лазер как для деактивации, так и для восстановления флуоресценции.
Данное достижение существенно расширяет возможности наблюдения над микроскопическими объектами как в биологических исследованиях, где можно проводить длительный мониторинг клеточных процессов, так и в материаловедении для изучения свойств наноматериалов. Высокий фотонный поток нанографенов гарантирует стабильность изображения даже при продолжительном сканировании.
Публикация результатов исследования в журнале Nature Communications подтверждает значимость метода, позволяющего преодолеть основное ограничение традиционной STED-микроскопии и сделать процесс наблюдения более долговременным.
Применение нанографенов открывает новые горизонты для изучения динамических процессов, ранее недоступных из-за ограничений классического подхода, что обещает дальнейшие успехи в области биологии и материаловедения.