Могут ли нанографены расширить возможности STED-микроскопии?

Метод суперразрешающей микроскопии продолжает эволюционировать благодаря замене традиционных флуорофоров на нанографены, что позволяет значительно увеличить время наблюдения за микроскопическими объектами.
Могут ли нанографены расширить возможности STED-микроскопии?
Изображение носит иллюстративный характер

В 2014 году Нобелевская премия по химии была присуждена за разработку методов супермолекулярного флуоресцентного микроскопирования, в число которых входит метод STED, преодолевший классический дифракционный предел, установленный более 200 нм Эрнстом Аббе.

STED-микроскопия демонстрирует разрешение, превосходящее обычные методы в 10 раз. При этом малые флуоресцентные молекулы активируются лазерным излучением, а вторичный лазер с формой «пончика» выключает свечение по периферии, оставляя включённым лишь центральный участок для создания детализированного изображения.

Ключевая проблема традиционного подхода заключается в том, что обычные флуорофоры сгорают под длительным освещением, что приводит к фотобличингу и ограничивает возможность наблюдения долгосрочных процессов.

Инновационное решение было предложено исследователями Института Макса Планка: ведущей специалисткой стала Сяомин Лю (Xiaomin Liu) из MPI для исследований полимеров, при активном сотрудничестве с Акимитсу Нарита и Рёта Кабе из Окинавского института науки и технологий. Замена флуорофоров на нанографены позволяет не только устранить эффект тускнения, но и использовать тот же «пончиковый» лазер как для деактивации, так и для восстановления флуоресценции.

Данное достижение существенно расширяет возможности наблюдения над микроскопическими объектами как в биологических исследованиях, где можно проводить длительный мониторинг клеточных процессов, так и в материаловедении для изучения свойств наноматериалов. Высокий фотонный поток нанографенов гарантирует стабильность изображения даже при продолжительном сканировании.

Публикация результатов исследования в журнале Nature Communications подтверждает значимость метода, позволяющего преодолеть основное ограничение традиционной STED-микроскопии и сделать процесс наблюдения более долговременным.

Применение нанографенов открывает новые горизонты для изучения динамических процессов, ранее недоступных из-за ограничений классического подхода, что обещает дальнейшие успехи в области биологии и материаловедения.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка