Ssylka

Могут ли ИИ-модели погоды превзойти традиционные системы прогнозирования?

В области метеорологии происходит значительный технологический прорыв: искусственный интеллект начинает конкурировать с традиционными методами прогнозирования погоды. Исследователи из Школы атмосферных наук Нанкинского университета и Центра численного прогнозирования Земной системы Китайской метеорологической администрации провели масштабное исследование, результаты которого опубликованы в журнале Atmospheric and Oceanic Science Letters.
Могут ли ИИ-модели погоды превзойти традиционные системы прогнозирования?
Изображение носит иллюстративный характер

Современные операционные центры активно используют системы прогнозирования конвективного масштаба, которые получают граничные условия от глобальных численных метеорологических моделей. Новые ИИ-модели погоды предлагают альтернативный подход, обеспечивая впечатляющее преимущество в скорости – они работают примерно в 10 000 раз быстрее традиционных методов, создавая прогнозы на 7-10 дней всего за несколько минут.

В исследовании сравнивались две ИИ-модели – Pangu-weather и Fuxi-weather – с традиционной Глобальной системой прогнозирования (GFS) Национальных центров экологического прогнозирования (NCEP). Результаты показали, что Pangu-weather демонстрирует сопоставимую эффективность с GFS при предоставлении граничных условий для прогнозов конвективного масштаба.

Модель Fuxi-weather показала несколько более низкие результаты по сравнению с Pangu-weather и GFS. Однако важным открытием стало влияние вертикального разрешения на точность прогнозов. Когда количество вертикальных уровней в GFS было уменьшено с 33 до 13 (для соответствия ИИ-моделям), это привело к значительному ухудшению результатов.

Исследование демонстрирует, что ИИ-модели погоды вполне способны заменить традиционные глобальные численные модели в качестве источников граничных условий для систем прогнозирования конвективного масштаба. При этом ожидается, что по мере улучшения вертикального разрешения ИИ-моделей их эффективность будет возрастать.

Данное исследование заполняет важный пробел в понимании применимости ИИ-моделей для метеорологического прогнозирования. Впервые проведен систематический анализ использования ИИ-прогнозируемых граничных условий для управления системами прогнозирования конвективного масштаба.

Результаты открывают новые перспективы в области метеорологического прогнозирования, где скорость и точность имеют решающее значение для принятия важных решений в различных сферах человеческой деятельности.


Новое на сайте

17902Lufthansa заменит 4000 административных сотрудников искусственным интеллектом 17901Каков истинный срок годности генетической информации? 17900Сможет ли закон догнать искусственный интеллект, предлагающий психотерапию? 17899Цепная реакция заражения листерией из-за одного поставщика 17898Холодный расчет: как современная наука изменила правила стирки 17897Деревянная начинка: массовый отзыв корн-догов из-за угрозы травм 17896Случайное открытие, спасшее 500 миллионов жизней 17895Мастерство мобильной съемки: полное руководство по камере iPhone 17894Что мог рассказать личный набор инструментов охотника эпохи палеолита? 17893Почему крупнейшая звездная колыбель млечного пути производит непропорционально много... 17892Обречены ли мы есть инжир с мертвыми осами внутри? 17891Почему AI-помощникам выгодно лгать, а не признавать незнание? 17890Является ли творчество искусственного интеллекта предсказуемым недостатком? 17889Как каланы цепляются за надежду? 17888Расшифрованный код древнего Египта