В области метеорологии происходит значительный технологический прорыв: искусственный интеллект начинает конкурировать с традиционными методами прогнозирования погоды. Исследователи из Школы атмосферных наук Нанкинского университета и Центра численного прогнозирования Земной системы Китайской метеорологической администрации провели масштабное исследование, результаты которого опубликованы в журнале Atmospheric and Oceanic Science Letters.

Современные операционные центры активно используют системы прогнозирования конвективного масштаба, которые получают граничные условия от глобальных численных метеорологических моделей. Новые ИИ-модели погоды предлагают альтернативный подход, обеспечивая впечатляющее преимущество в скорости – они работают примерно в 10 000 раз быстрее традиционных методов, создавая прогнозы на 7-10 дней всего за несколько минут.
В исследовании сравнивались две ИИ-модели – Pangu-weather и Fuxi-weather – с традиционной Глобальной системой прогнозирования (GFS) Национальных центров экологического прогнозирования (NCEP). Результаты показали, что Pangu-weather демонстрирует сопоставимую эффективность с GFS при предоставлении граничных условий для прогнозов конвективного масштаба.
Модель Fuxi-weather показала несколько более низкие результаты по сравнению с Pangu-weather и GFS. Однако важным открытием стало влияние вертикального разрешения на точность прогнозов. Когда количество вертикальных уровней в GFS было уменьшено с 33 до 13 (для соответствия ИИ-моделям), это привело к значительному ухудшению результатов.
Исследование демонстрирует, что ИИ-модели погоды вполне способны заменить традиционные глобальные численные модели в качестве источников граничных условий для систем прогнозирования конвективного масштаба. При этом ожидается, что по мере улучшения вертикального разрешения ИИ-моделей их эффективность будет возрастать.
Данное исследование заполняет важный пробел в понимании применимости ИИ-моделей для метеорологического прогнозирования. Впервые проведен систематический анализ использования ИИ-прогнозируемых граничных условий для управления системами прогнозирования конвективного масштаба.
Результаты открывают новые перспективы в области метеорологического прогнозирования, где скорость и точность имеют решающее значение для принятия важных решений в различных сферах человеческой деятельности.

Изображение носит иллюстративный характер
Современные операционные центры активно используют системы прогнозирования конвективного масштаба, которые получают граничные условия от глобальных численных метеорологических моделей. Новые ИИ-модели погоды предлагают альтернативный подход, обеспечивая впечатляющее преимущество в скорости – они работают примерно в 10 000 раз быстрее традиционных методов, создавая прогнозы на 7-10 дней всего за несколько минут.
В исследовании сравнивались две ИИ-модели – Pangu-weather и Fuxi-weather – с традиционной Глобальной системой прогнозирования (GFS) Национальных центров экологического прогнозирования (NCEP). Результаты показали, что Pangu-weather демонстрирует сопоставимую эффективность с GFS при предоставлении граничных условий для прогнозов конвективного масштаба.
Модель Fuxi-weather показала несколько более низкие результаты по сравнению с Pangu-weather и GFS. Однако важным открытием стало влияние вертикального разрешения на точность прогнозов. Когда количество вертикальных уровней в GFS было уменьшено с 33 до 13 (для соответствия ИИ-моделям), это привело к значительному ухудшению результатов.
Исследование демонстрирует, что ИИ-модели погоды вполне способны заменить традиционные глобальные численные модели в качестве источников граничных условий для систем прогнозирования конвективного масштаба. При этом ожидается, что по мере улучшения вертикального разрешения ИИ-моделей их эффективность будет возрастать.
Данное исследование заполняет важный пробел в понимании применимости ИИ-моделей для метеорологического прогнозирования. Впервые проведен систематический анализ использования ИИ-прогнозируемых граничных условий для управления системами прогнозирования конвективного масштаба.
Результаты открывают новые перспективы в области метеорологического прогнозирования, где скорость и точность имеют решающее значение для принятия важных решений в различных сферах человеческой деятельности.