Исследователи из Токийского университета науки разработали инновационный подход к созданию ДНК-гидрогелей, способных значительно улучшить системы доставки лекарственных препаратов. Этот прорыв может изменить методы лечения различных заболеваний.

Гидрогели представляют собой полимерные материалы с трехмерной сетчатой структурой, способные удерживать большое количество воды. Их главное преимущество заключается в биосовместимости, способности к биоразложению и простоте введения в организм в качестве инъекционного каркаса для доставки биоактивных веществ.
Исследовательская группа под руководством профессора Макия Нишикава, в которую входят Цзянь Цзинь, доцент Шоко Итакура и профессор Косуке Кусамори, поставила цель минимизировать и оптимизировать ДНК-наноструктуры для создания стабильных гидрогелей с использованием меньшего количества нуклеиновых кислот.
Ученые разработали особую структуру ДНК в форме «такуми», состоящую всего из двух олигодезоксинуклеотидов (ОДН). Каждый ОДН содержит палиндромный стебель длиной 8-18 нуклеотидов и две когезивные части по обеим сторонам стебля, разделенные тимидиновым спейсером.
В ходе оптимизации было установлено, что для формирования стабильных гидрогелевых единиц достаточно стебля длиной 12 нуклеотидов, а 10-нуклеотидные когезивные части обеспечивают эффективную гибридизацию. Наилучшие результаты показала конструкция "12s-(T-10c)2-ODN", требующая всего 68 нуклеотидов для формирования гидрогелевой единицы.
Эксперименты in vivo с противоопухолевым препаратом доксорубицином продемонстрировали, что оптимизированный ДНК-гидрогель сохраняется в организме мышей не менее 168 часов после введения. Это обеспечивает длительное локальное высвобождение лекарства и усиливает противоопухолевый эффект.
По словам профессора Нишикава, оптимизированный ДНК-гидрогель на основе структуры "12s-(T-10c)2" показал более длительное удержание по сравнению с гексаподна-основанным ДНК-гидрогелем при введении мышам. Это открытие демонстрирует, как минимальные ДНК-единицы могут собираться в биосовместимые гидрогели с высоким временем удержания и устойчивым высвобождением лекарств, открывая путь к перспективным таргетным биомедицинским терапиям.

Изображение носит иллюстративный характер
Гидрогели представляют собой полимерные материалы с трехмерной сетчатой структурой, способные удерживать большое количество воды. Их главное преимущество заключается в биосовместимости, способности к биоразложению и простоте введения в организм в качестве инъекционного каркаса для доставки биоактивных веществ.
Исследовательская группа под руководством профессора Макия Нишикава, в которую входят Цзянь Цзинь, доцент Шоко Итакура и профессор Косуке Кусамори, поставила цель минимизировать и оптимизировать ДНК-наноструктуры для создания стабильных гидрогелей с использованием меньшего количества нуклеиновых кислот.
Ученые разработали особую структуру ДНК в форме «такуми», состоящую всего из двух олигодезоксинуклеотидов (ОДН). Каждый ОДН содержит палиндромный стебель длиной 8-18 нуклеотидов и две когезивные части по обеим сторонам стебля, разделенные тимидиновым спейсером.
В ходе оптимизации было установлено, что для формирования стабильных гидрогелевых единиц достаточно стебля длиной 12 нуклеотидов, а 10-нуклеотидные когезивные части обеспечивают эффективную гибридизацию. Наилучшие результаты показала конструкция "12s-(T-10c)2-ODN", требующая всего 68 нуклеотидов для формирования гидрогелевой единицы.
Эксперименты in vivo с противоопухолевым препаратом доксорубицином продемонстрировали, что оптимизированный ДНК-гидрогель сохраняется в организме мышей не менее 168 часов после введения. Это обеспечивает длительное локальное высвобождение лекарства и усиливает противоопухолевый эффект.
По словам профессора Нишикава, оптимизированный ДНК-гидрогель на основе структуры "12s-(T-10c)2" показал более длительное удержание по сравнению с гексаподна-основанным ДНК-гидрогелем при введении мышам. Это открытие демонстрирует, как минимальные ДНК-единицы могут собираться в биосовместимые гидрогели с высоким временем удержания и устойчивым высвобождением лекарств, открывая путь к перспективным таргетным биомедицинским терапиям.