Spring AI предлагает пять ключевых паттернов для создания LLM-систем, основанных на принципах простоты и модульности: Chain Workflow, Parallelization Workflow, Routing Workflow, Orchestrator-Workers и Evaluator-Optimizer. Chain Workflow разбивает задачи на последовательные этапы, где выход каждого шага служит входом для следующего, оптимизируя точность. Parallelization Workflow параллельно обрабатывает независимые подзадачи, увеличивая скорость работы. Routing Workflow направляет ввод к специализированным обработчикам, обеспечивая гибкость. Orchestrator-Workers применяет иерархическую модель: центральная LLM координирует, а специализированные обработчики выполняют подзадачи. Evaluator-Optimizer итеративно улучшает ответы, используя обратную связь от второй LLM.
Реализация данных паттернов в Spring AI отличается переносимостью моделей, структурированным выводом, стабильным API, встроенной обработкой ошибок и гибким управлением подсказками. Выбор подходящего паттерна следует начинать с простых workflows, добавляя сложность лишь при необходимости. Важно также реализовывать надежную систему обработки ошибок, использовать типобезопасные ответы и проводить валидацию на каждом этапе.
При разработке LLM-систем следует балансировать между скоростью и точностью, выбирать между параллельной обработкой и последовательным выполнением, а также между фиксированными workflows и динамическими агентами. Начать стоит с простых решений, переходя к более сложным, только когда это действительно необходимо. Это позволяет создавать эффективные и легко поддерживаемые ИИ-приложения.
В дальнейшем планируется рассмотрение таких возможностей как композиция паттернов, управление памятью агента, интеграция инструментов и протокола Model-Context, а также создание расширяемых архитектур агента. Это позволит разработчикам создавать еще более мощные и гибкие решения на основе LLM.
Изображение носит иллюстративный характер
Реализация данных паттернов в Spring AI отличается переносимостью моделей, структурированным выводом, стабильным API, встроенной обработкой ошибок и гибким управлением подсказками. Выбор подходящего паттерна следует начинать с простых workflows, добавляя сложность лишь при необходимости. Важно также реализовывать надежную систему обработки ошибок, использовать типобезопасные ответы и проводить валидацию на каждом этапе.
При разработке LLM-систем следует балансировать между скоростью и точностью, выбирать между параллельной обработкой и последовательным выполнением, а также между фиксированными workflows и динамическими агентами. Начать стоит с простых решений, переходя к более сложным, только когда это действительно необходимо. Это позволяет создавать эффективные и легко поддерживаемые ИИ-приложения.
В дальнейшем планируется рассмотрение таких возможностей как композиция паттернов, управление памятью агента, интеграция инструментов и протокола Model-Context, а также создание расширяемых архитектур агента. Это позволит разработчикам создавать еще более мощные и гибкие решения на основе LLM.