Ssylka

Эффективные LLM-агенты: паттерны Spring AI для практической реализации

Spring AI предлагает пять ключевых паттернов для создания LLM-систем, основанных на принципах простоты и модульности: Chain Workflow, Parallelization Workflow, Routing Workflow, Orchestrator-Workers и Evaluator-Optimizer. Chain Workflow разбивает задачи на последовательные этапы, где выход каждого шага служит входом для следующего, оптимизируя точность. Parallelization Workflow параллельно обрабатывает независимые подзадачи, увеличивая скорость работы. Routing Workflow направляет ввод к специализированным обработчикам, обеспечивая гибкость. Orchestrator-Workers применяет иерархическую модель: центральная LLM координирует, а специализированные обработчики выполняют подзадачи. Evaluator-Optimizer итеративно улучшает ответы, используя обратную связь от второй LLM.
Эффективные LLM-агенты: паттерны Spring AI для практической реализации
Изображение носит иллюстративный характер

Реализация данных паттернов в Spring AI отличается переносимостью моделей, структурированным выводом, стабильным API, встроенной обработкой ошибок и гибким управлением подсказками. Выбор подходящего паттерна следует начинать с простых workflows, добавляя сложность лишь при необходимости. Важно также реализовывать надежную систему обработки ошибок, использовать типобезопасные ответы и проводить валидацию на каждом этапе.

При разработке LLM-систем следует балансировать между скоростью и точностью, выбирать между параллельной обработкой и последовательным выполнением, а также между фиксированными workflows и динамическими агентами. Начать стоит с простых решений, переходя к более сложным, только когда это действительно необходимо. Это позволяет создавать эффективные и легко поддерживаемые ИИ-приложения.

В дальнейшем планируется рассмотрение таких возможностей как композиция паттернов, управление памятью агента, интеграция инструментов и протокола Model-Context, а также создание расширяемых архитектур агента. Это позволит разработчикам создавать еще более мощные и гибкие решения на основе LLM.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года