Ssylka

Как магний в нановолокнах способен революционизировать заживление ран?

В ноябре 2024 года в International Journal of Nanomedicine было опубликовано революционное исследование под руководством доктора Сараваны Кумара Джаганатана, направленное на создание инновационных раневых повязок из нановолокон.
Как магний в нановолокнах способен революционизировать заживление ран?
Изображение носит иллюстративный характер

Разработка была вызвана острой необходимостью улучшения методов лечения тяжелых ран, включая ожоги, травмы и диабетические поражения, которые не поддаются традиционной терапии. Кожа, являясь главным защитным барьером организма, требует особого подхода при серьезных повреждениях.

Исследовательская группа применила технологию электроспиннинга для создания нановолоконных повязок, объединив полиуретан (PU) с хлоридом магния (MgCl2). Полиуретан был выбран благодаря его гибкости, прочности и биосовместимости – качествам, уже доказавшим свою эффективность в медицинской практике.

Структура полученных нановолокон максимально приближена к естественной структуре тканей, что обеспечивает оптимальные условия для прикрепления и роста клеток. Важным преимуществом стала контролируемая пористость материала, способствующая правильному заживлению.

Механическая прочность новых повязок почти вдвое превысила показатели традиционных полиуретановых аналогов. Тесты на свертываемость крови (АЧТВ и ПВ) показали, что добавление хлорида магния увеличивает время свертывания, снижая риск нежелательных реакций.

Исследования антимикробных свойств с использованием Staphylococcus aureus и Escherichia coli продемонстрировали способность магний-обогащенных повязок подавлять рост бактерий, чего не наблюдалось у обычных полиуретановых повязок. Это существенно снижает риск инфекционных осложнений.

Особенно важным стало изучение жизнеспособности фибробластов – клеток, критически важных для регенерации тканей. Повязки с магнием показали значительно более высокие показатели роста и жизнеспособности клеток при полном отсутствии токсичности.

Следующим этапом исследований станут клинические испытания in vivo для подтверждения эффективности разработки в реальных условиях. Новая технология обещает значительный прорыв в лечении сложных ран, обеспечивая более быстрое и безопасное заживление.


Новое на сайте

15287Жидкость, восстанавливающая форму: нарушение законов термодинамики 15286Аркадия ведьм: загадка Чарльза годфри Леланда и её влияние на современную магию 15285Кто станет новым героем Звёздных войн в 2027 году? 15283Ануше Ансари | Почему космические исследования важны для Земли 15282Гизем Гумбуская | Синтетический морфогенез: самоконструирующиеся живые архитектуры по... 15281Как предпринимателю остаться хозяином своей судьбы? 15280Люси: путешествие к древним обломкам солнечной системы 15279Роберт Лиллис: извлеченные уроки для экономически эффективных исследований дальнего... 15278Почему супермен до сих пор остаётся символом надежды и морали? 15277Райан Гослинг в роли нового героя «Звёздных войн»: что известно о фильме Star Wars:... 15276Почему экваториальная Гвинея остаётся одной из самых закрытых и жестоких диктатур мира? 15275Почему морские слизни становятся ярче под солнцем? 15274Глен Вейль | Можем ли мы использовать ИИ для построения более справедливого общества? 15273Лириды: где и как увидеть древний звездопад в этом апреле? 15272Сдержит ли налог на однодневных туристов в Венеции наплыв гостей?