В XIX веке Джеймс Клерк Максвелл предложил мысленный эксперимент, который более века не давал покоя физикам всего мира. Он представил крошечное существо – «демона», способное сортировать молекулы газа по их скорости, создавая разницу температур без затрат энергии. Этот парадокс казался прямым вызовом второму началу термодинамики – фундаментальному закону природы.
Второе начало термодинамики утверждает, что энтропия в замкнутой системе может только возрастать. Проще говоря, все системы стремятся к нарастающему беспорядку. Именно поэтому горячий кофе остывает, разбросанные ветром бумаги не собираются обратно в стопку, а порядок в комнате не возникает сам по себе.
Недавно международная группа ученых из Нагойского университета и Словацкой академии наук создала математическую модель «демонического двигателя», используя теорию квантовых инструментов. Их расчеты показали удивительный результат: в определенных квантовых условиях «демон» теоретически мог извлекать больше работы, чем затрачивал энергии.
«Мы были, мягко говоря, удивлены полученными результатами», – признался один из авторов исследования, Синтаро Минагава. Казалось, что второе начало термодинамики действительно нарушается в квантовом мире.
Однако Франческо Бушеми внес важное уточнение: «Квантовая теория просто 'не знает' о существовании второго начала». При более детальном рассмотрении выяснилось, что любой квантовый процесс можно реализовать так, чтобы он не противоречил термодинамике – достаточно учесть дополнительные системы, восстанавливающие энергетический баланс.
Это открытие имеет серьезное практическое значение для развития квантовых технологий. Понимание взаимодействия квантовой механики с термодинамикой критически важно для разработки квантовых компьютеров и создания микроскопических двигателей нового поколения.
Работа японо-словацкой команды стала значительным шагом в исследовании квантового мира. Хотя «демон Максвелла» и не смог опровергнуть законы физики, он помог раскрыть новые горизонты в понимании квантовых процессов и их влияния на макроскопический мир.
Изображение носит иллюстративный характер
Второе начало термодинамики утверждает, что энтропия в замкнутой системе может только возрастать. Проще говоря, все системы стремятся к нарастающему беспорядку. Именно поэтому горячий кофе остывает, разбросанные ветром бумаги не собираются обратно в стопку, а порядок в комнате не возникает сам по себе.
Недавно международная группа ученых из Нагойского университета и Словацкой академии наук создала математическую модель «демонического двигателя», используя теорию квантовых инструментов. Их расчеты показали удивительный результат: в определенных квантовых условиях «демон» теоретически мог извлекать больше работы, чем затрачивал энергии.
«Мы были, мягко говоря, удивлены полученными результатами», – признался один из авторов исследования, Синтаро Минагава. Казалось, что второе начало термодинамики действительно нарушается в квантовом мире.
Однако Франческо Бушеми внес важное уточнение: «Квантовая теория просто 'не знает' о существовании второго начала». При более детальном рассмотрении выяснилось, что любой квантовый процесс можно реализовать так, чтобы он не противоречил термодинамике – достаточно учесть дополнительные системы, восстанавливающие энергетический баланс.
Это открытие имеет серьезное практическое значение для развития квантовых технологий. Понимание взаимодействия квантовой механики с термодинамикой критически важно для разработки квантовых компьютеров и создания микроскопических двигателей нового поколения.
Работа японо-словацкой команды стала значительным шагом в исследовании квантового мира. Хотя «демон Максвелла» и не смог опровергнуть законы физики, он помог раскрыть новые горизонты в понимании квантовых процессов и их влияния на макроскопический мир.