Ssylka

Как растения защищают вакуоли?

В засушливые периоды листья растений поникают, а после полива вновь поднимаются. Такой эффект связан с управлением внутренним давлением в клетках, где главную роль играет гибкая, но прочная клеточная стенка и крупная вакуоль, наполненная водой. При достаточном количестве влаги вакуоль давит на стенку, сохраняя упругость, однако даже небольшая утечка или повреждение может привести к катастрофическим последствиям.
Как растения защищают вакуоли?
Изображение носит иллюстративный характер

Исследователи обратили внимание на проблему разрыва вакуолей: при нарушении целостности клеточной стенки из-за внешних факторов весь водяной "баллон" внутри клетки может лопнуть и вызвать гибель клетки. Механизм оперативной защиты клетки от такого разрыва долгое время оставался загадкой, хотя про быструю починку самой клеточной стенки было известно значительно больше.

Группа Дагдаса решила разобраться в этом вопросе с помощью генетических и функциональных исследований на Marchantia polymorpha и Arabidopsis thaliana. Учёные обнаружили универсальный механизм, при котором молекула ATG8 "пришивается" к мембране вакуоли сразу после нарушения клеточной стенки. Процесс, названный ATG8-иляцией, оказался критически важным для того, чтобы вакуоль не разрушалась при резком скачке внутреннего давления.

Оказалось, что в нормальных условиях ATG8 находится в небольших везикулах, связанных с функцией аутофагии. При опасном изменении давления бериологичная молекула быстро перемещается на мембрану вакуоли. Если подопытным растениям блокировали способность перенаправлять ATG8, вакуоли действительно чаще разрывались, что приводило к необратимой гибели клетки. Результаты исследования опубликованы в журнале Nature Plants.

Команда планирует определить, как именно растительная клетка улавливает повреждения стенки и каким образом ATG8 защищает мембрану от опасного перепада давления. В качестве гипотез рассматриваются два сценария: первая идея заключается в том, что ATG8 увеличивает эластичность мембраны, помогая ей растягиваться и компенсировать скачки давления; вторая – что эта молекула участвует в удалении или изоляции нарушенных фрагментов мембраны.

«Раскрытие этого процесса будет иметь решающее значение для понимания того, как растительные клетки защищают себя от внешних воздействий, таких как патогены и неблагоприятные условия среды», – отмечает соавтор исследования Хосе Хулиан, постдокторант из лаборатории Ясина Дагдаса. Уточнение механизмов ATG8-иляции может помочь в создании более устойчивых к стрессам культурных растений и в целом расширяет понимание того, как организмы сохраняют структуру в непростых условиях.


Новое на сайте

9459Секреты долголетия срезанных цветов: научный подход к сохранению букета 9458Как защитить свои деньги от мошенников в AppStore? 9457Новый вид глубоководной рыбы назвали в честь принцессы-воительницы из аниме 9456Почему таяние гренландского льда может стать точкой невозврата для человечества? 9455Критические уязвимости в VPN-решениях: Ivanti, SonicWall и Fortinet под ударом 9454Как межзвездная пыль с Альфы Центавра попадает на нашу планету? 9453Секреты эффективной работы посудомоечной машины: почему не растворяются таблетки 9452Разоблачение мифа: настоящая природа змеиного "заклинания" 9451Секреты древнего зодчества: почему сосна стала главным строительным материалом на Руси 9450Как птицы Тома Брауна покорили Нью-Йоркскую Неделю моды? 9449Как понять характер кошки по её любимым позам для сна? 9448Как масштабный солнечный проект в саффолке изменит энергетический ландшафт Великобритании? 9447Как подводные реки океанов меняют наше представление о морских глубинах? 9446Как мыши используют банановый аромат для защиты своего потомства? 9445Как южная Корея планирует спасти тысячи собак к 2027 году?