Как растения защищают вакуоли?

В засушливые периоды листья растений поникают, а после полива вновь поднимаются. Такой эффект связан с управлением внутренним давлением в клетках, где главную роль играет гибкая, но прочная клеточная стенка и крупная вакуоль, наполненная водой. При достаточном количестве влаги вакуоль давит на стенку, сохраняя упругость, однако даже небольшая утечка или повреждение может привести к катастрофическим последствиям.
Как растения защищают вакуоли?
Изображение носит иллюстративный характер

Исследователи обратили внимание на проблему разрыва вакуолей: при нарушении целостности клеточной стенки из-за внешних факторов весь водяной "баллон" внутри клетки может лопнуть и вызвать гибель клетки. Механизм оперативной защиты клетки от такого разрыва долгое время оставался загадкой, хотя про быструю починку самой клеточной стенки было известно значительно больше.

Группа Дагдаса решила разобраться в этом вопросе с помощью генетических и функциональных исследований на Marchantia polymorpha и Arabidopsis thaliana. Учёные обнаружили универсальный механизм, при котором молекула ATG8 "пришивается" к мембране вакуоли сразу после нарушения клеточной стенки. Процесс, названный ATG8-иляцией, оказался критически важным для того, чтобы вакуоль не разрушалась при резком скачке внутреннего давления.

Оказалось, что в нормальных условиях ATG8 находится в небольших везикулах, связанных с функцией аутофагии. При опасном изменении давления бериологичная молекула быстро перемещается на мембрану вакуоли. Если подопытным растениям блокировали способность перенаправлять ATG8, вакуоли действительно чаще разрывались, что приводило к необратимой гибели клетки. Результаты исследования опубликованы в журнале Nature Plants.

Команда планирует определить, как именно растительная клетка улавливает повреждения стенки и каким образом ATG8 защищает мембрану от опасного перепада давления. В качестве гипотез рассматриваются два сценария: первая идея заключается в том, что ATG8 увеличивает эластичность мембраны, помогая ей растягиваться и компенсировать скачки давления; вторая – что эта молекула участвует в удалении или изоляции нарушенных фрагментов мембраны.

«Раскрытие этого процесса будет иметь решающее значение для понимания того, как растительные клетки защищают себя от внешних воздействий, таких как патогены и неблагоприятные условия среды», – отмечает соавтор исследования Хосе Хулиан, постдокторант из лаборатории Ясина Дагдаса. Уточнение механизмов ATG8-иляции может помочь в создании более устойчивых к стрессам культурных растений и в целом расширяет понимание того, как организмы сохраняют структуру в непростых условиях.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка