Ssylka

Как растения защищают вакуоли?

В засушливые периоды листья растений поникают, а после полива вновь поднимаются. Такой эффект связан с управлением внутренним давлением в клетках, где главную роль играет гибкая, но прочная клеточная стенка и крупная вакуоль, наполненная водой. При достаточном количестве влаги вакуоль давит на стенку, сохраняя упругость, однако даже небольшая утечка или повреждение может привести к катастрофическим последствиям.
Как растения защищают вакуоли?
Изображение носит иллюстративный характер

Исследователи обратили внимание на проблему разрыва вакуолей: при нарушении целостности клеточной стенки из-за внешних факторов весь водяной "баллон" внутри клетки может лопнуть и вызвать гибель клетки. Механизм оперативной защиты клетки от такого разрыва долгое время оставался загадкой, хотя про быструю починку самой клеточной стенки было известно значительно больше.

Группа Дагдаса решила разобраться в этом вопросе с помощью генетических и функциональных исследований на Marchantia polymorpha и Arabidopsis thaliana. Учёные обнаружили универсальный механизм, при котором молекула ATG8 "пришивается" к мембране вакуоли сразу после нарушения клеточной стенки. Процесс, названный ATG8-иляцией, оказался критически важным для того, чтобы вакуоль не разрушалась при резком скачке внутреннего давления.

Оказалось, что в нормальных условиях ATG8 находится в небольших везикулах, связанных с функцией аутофагии. При опасном изменении давления бериологичная молекула быстро перемещается на мембрану вакуоли. Если подопытным растениям блокировали способность перенаправлять ATG8, вакуоли действительно чаще разрывались, что приводило к необратимой гибели клетки. Результаты исследования опубликованы в журнале Nature Plants.

Команда планирует определить, как именно растительная клетка улавливает повреждения стенки и каким образом ATG8 защищает мембрану от опасного перепада давления. В качестве гипотез рассматриваются два сценария: первая идея заключается в том, что ATG8 увеличивает эластичность мембраны, помогая ей растягиваться и компенсировать скачки давления; вторая – что эта молекула участвует в удалении или изоляции нарушенных фрагментов мембраны.

«Раскрытие этого процесса будет иметь решающее значение для понимания того, как растительные клетки защищают себя от внешних воздействий, таких как патогены и неблагоприятные условия среды», – отмечает соавтор исследования Хосе Хулиан, постдокторант из лаборатории Ясина Дагдаса. Уточнение механизмов ATG8-иляции может помочь в создании более устойчивых к стрессам культурных растений и в целом расширяет понимание того, как организмы сохраняют структуру в непростых условиях.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года