Как оценить реальную обобщающую способность нейросети?

Исследование ландшафтов функций потерь нейросетей – это метод, позволяющий визуализировать и анализировать влияние изменения весов модели на значение функции потерь. Это дает возможность оценить стабильность обучения и способность модели к обобщению, то есть к корректной работе на данных, отличных от тренировочных. Плоские минимумы на ландшафте функции потерь указывают на более устойчивую модель, чем резкие пики и хаотичные области.
Как оценить реальную обобщающую способность нейросети?
Изображение носит иллюстративный характер

Библиотека Loss Landscape Analysis (LLA) предоставляет инструменты для построения и анализа этих ландшафтов. LLA включает в себя функции для выбора различных типов осей (случайные, Адама, Гессиана), уравнений обновления весов (стандартное сложение или по правилам Adam), типов нормализации для векторов, а также возможность «заморозки» отдельных слоёв. Анализ ландшафтов по осям Адама или Гессиана может выявить особенности обучения, незаметные при анализе по случайным осям.

Библиотека LLA позволяет исследовать не только ландшафты, но и спектр гессиана (матрицы вторых производных функции потерь). Анализ гессиана предоставляет информацию о состоянии нейросети, которую сложно получить только из анализа ландшафтов. Спектр гессиана может изменяться в процессе обучения, и его корреляция с точностью сети позволяет оценить способность к обобщению на других данных.

LLA предоставляет гибкий подход к анализу, позволяя пользователям настроить параметры в зависимости от задачи. Библиотека разработана с учетом разнообразия моделей и задач, что позволяет анализировать не только стандартные, но и более сложные нейросети, включая архитектуры вроде VAE и VIT, а также сложные функции потерь, оперирующие с промежуточными слоями. Это устраняет необходимость «лезть с отверткой» в код библиотеки при каждом нестандартном случае, делая LLA удобным инструментом для широкого круга задач.


Новое на сайте

19184Как искусственный интеллект уничтожил временной зазор между обнаружением уязвимости и... 19183Банковский троян Massiv маскируется под IPTV для захвата контроля над Android 19182Как шпионская кампания CRESCENTHARVEST использует социальную инженерию для кражи данных... 19181Как критическая уязвимость в телефонах Grandstream открывает хакерам доступ к... 19180Почему операционная непрерывность становится единственным ответом на перманентную... 19179Критические уязвимости в популярных расширениях VS Code угрожают миллионам разработчиков 19178Как внедрить интеллектуальные рабочие процессы и почему 88% проектов ИИ терпят неудачу? 19177Критическая уязвимость нулевого дня в Dell RecoverPoint открывает злоумышленникам полный... 19176Notepad++ внедряет механизм двойной блокировки для защиты от атак группировки Lotus Panda 19175Новые угрозы в каталоге CISA: от критических дыр в Chrome и Zimbra до возвращения червя... 19174Использование чат-ботов Copilot и Grok в качестве скрытых прокси-серверов для управления... 19173Троянизированный сервер Oura MCP атакует разработчиков через поддельные репозитории GitHub 19172Способен ли искусственный интеллект заменить интуицию Уоррена Баффета в биологической... 19171Вредоносное по VoidLink: созданная с помощью ИИ угроза для облачных систем и финансового... 19170Палеонтологические поиски и научные убеждения Томаса Джефферсона
Ссылка