Ssylka

Как оценить реальную обобщающую способность нейросети?

Исследование ландшафтов функций потерь нейросетей – это метод, позволяющий визуализировать и анализировать влияние изменения весов модели на значение функции потерь. Это дает возможность оценить стабильность обучения и способность модели к обобщению, то есть к корректной работе на данных, отличных от тренировочных. Плоские минимумы на ландшафте функции потерь указывают на более устойчивую модель, чем резкие пики и хаотичные области.
Как оценить реальную обобщающую способность нейросети?
Изображение носит иллюстративный характер

Библиотека Loss Landscape Analysis (LLA) предоставляет инструменты для построения и анализа этих ландшафтов. LLA включает в себя функции для выбора различных типов осей (случайные, Адама, Гессиана), уравнений обновления весов (стандартное сложение или по правилам Adam), типов нормализации для векторов, а также возможность «заморозки» отдельных слоёв. Анализ ландшафтов по осям Адама или Гессиана может выявить особенности обучения, незаметные при анализе по случайным осям.

Библиотека LLA позволяет исследовать не только ландшафты, но и спектр гессиана (матрицы вторых производных функции потерь). Анализ гессиана предоставляет информацию о состоянии нейросети, которую сложно получить только из анализа ландшафтов. Спектр гессиана может изменяться в процессе обучения, и его корреляция с точностью сети позволяет оценить способность к обобщению на других данных.

LLA предоставляет гибкий подход к анализу, позволяя пользователям настроить параметры в зависимости от задачи. Библиотека разработана с учетом разнообразия моделей и задач, что позволяет анализировать не только стандартные, но и более сложные нейросети, включая архитектуры вроде VAE и VIT, а также сложные функции потерь, оперирующие с промежуточными слоями. Это устраняет необходимость «лезть с отверткой» в код библиотеки при каждом нестандартном случае, делая LLA удобным инструментом для широкого круга задач.


Новое на сайте

15287Жидкость, восстанавливающая форму: нарушение законов термодинамики 15286Аркадия ведьм: загадка Чарльза годфри Леланда и её влияние на современную магию 15285Кто станет новым героем Звёздных войн в 2027 году? 15283Ануше Ансари | Почему космические исследования важны для Земли 15282Гизем Гумбуская | Синтетический морфогенез: самоконструирующиеся живые архитектуры по... 15281Как предпринимателю остаться хозяином своей судьбы? 15280Люси: путешествие к древним обломкам солнечной системы 15279Роберт Лиллис: извлеченные уроки для экономически эффективных исследований дальнего... 15278Почему супермен до сих пор остаётся символом надежды и морали? 15277Райан Гослинг в роли нового героя «Звёздных войн»: что известно о фильме Star Wars:... 15276Почему экваториальная Гвинея остаётся одной из самых закрытых и жестоких диктатур мира? 15275Почему морские слизни становятся ярче под солнцем? 15274Глен Вейль | Можем ли мы использовать ИИ для построения более справедливого общества? 15273Лириды: где и как увидеть древний звездопад в этом апреле? 15272Сдержит ли налог на однодневных туристов в Венеции наплыв гостей?