Ssylka

Как эффективно сегментировать дефекты на промышленных изображениях?

Для решения задачи сегментации дефектов на производственных изображениях, был применен подход, основанный на архитектуре UNet. В качестве энкодера использовалась предобученная модель MobileNetV2, что позволило снизить вычислительные затраты, в то время как декодер был реализован с применением техники upsampling из pix2pix. Это сочетание позволило эффективно извлекать и восстанавливать пространственные детали изображений, необходимые для точного обнаружения дефектов.
Как эффективно сегментировать дефекты на промышленных изображениях?
Изображение носит иллюстративный характер

Несмотря на ограничения в объеме данных, модель достигла значительных результатов, продемонстрировав точность около 89.8% и IoU (Intersection over Union) в районе 80.2% на тренировочном наборе данных, и немного хуже на валидационных данных. Такой уровень производительности свидетельствует об эффективности выбранного подхода, особенно с учетом ограничений, наложенных условиями задачи. Применялись также методы аугментации данных, такие как горизонтальные повороты, для расширения обучающей выборки и повышения устойчивости модели.

Реализация модели включала использование TensorFlow, стандартного набора инструментов для машинного обучения. В процессе работы применялись методы downsampling, основанные на архитектуре MobileNetV2, и upsampling с применением pix2pix для восстановления изображений. Обучение проводилось с использованием оптимизатора Adam, функции потерь Binary Crossentropy и метрики IoU.

В заключение, несмотря на некоторые ошибки в предсказаниях, особенно при работе с нечеткими или сильно загрязненными изображениями, модель показала свою эффективность в условиях ограниченного объема данных и времени на обучение. Дальнейшее улучшение может быть достигнуто за счет настройки гиперпараметров, увеличения объема данных и исследования альтернативных архитектур нейросетей.


Новое на сайте

18907Почему священное озеро хилук в Канаде покрывается разноцветными пятнами из минералов? 18906Почему рост инвентаря активов не снижает риски и как на самом деле измерять окупаемость... 18905Как киберпреступники использовали Google Cloud Application Integration для обхода систем... 18904Почему эволюция лишила человека способности управлять пальцами ног по отдельности, как... 18903Как нестандартная архитектура браузера Adapt и оптимизация рабочих процессов решают... 18902Как средневековые писательницы разрушили мужской миф о дружбе как зеркальном отражении? 18901Где искать на небе уникальное волчье суперлуние в соединении с Юпитером в начале 2026... 18900Ботнет RondoDox атакует 90 тысяч серверов через критическую уязвимость React2Shell 18899Что приготовила луна на 2026 год: когда наблюдать 13 полнолуний, кровавое затмение и... 18898Глобальная кампания кибершпионажа DarkSpectre скомпрометировала миллионы браузеров в... 18897Действительно ли человечеству необходимо колонизировать другие миры? 18896Особенности наблюдения метеорного потока квадрантиды в условиях январского полнолуния 18895Каменные пирамиды раздора и наследие «мясника Гипсленда» в Австралии 18894Критическая уязвимость в IBM API Connect с рейтингом 9.8 угрожает безопасности глобальных... 18893Эволюция киберугроз в npm и Maven: самораспространяющийся червь Shai-Hulud и поддельный...