Ssylka

Как эффективно сегментировать дефекты на промышленных изображениях?

Для решения задачи сегментации дефектов на производственных изображениях, был применен подход, основанный на архитектуре UNet. В качестве энкодера использовалась предобученная модель MobileNetV2, что позволило снизить вычислительные затраты, в то время как декодер был реализован с применением техники upsampling из pix2pix. Это сочетание позволило эффективно извлекать и восстанавливать пространственные детали изображений, необходимые для точного обнаружения дефектов.
Как эффективно сегментировать дефекты на промышленных изображениях?
Изображение носит иллюстративный характер

Несмотря на ограничения в объеме данных, модель достигла значительных результатов, продемонстрировав точность около 89.8% и IoU (Intersection over Union) в районе 80.2% на тренировочном наборе данных, и немного хуже на валидационных данных. Такой уровень производительности свидетельствует об эффективности выбранного подхода, особенно с учетом ограничений, наложенных условиями задачи. Применялись также методы аугментации данных, такие как горизонтальные повороты, для расширения обучающей выборки и повышения устойчивости модели.

Реализация модели включала использование TensorFlow, стандартного набора инструментов для машинного обучения. В процессе работы применялись методы downsampling, основанные на архитектуре MobileNetV2, и upsampling с применением pix2pix для восстановления изображений. Обучение проводилось с использованием оптимизатора Adam, функции потерь Binary Crossentropy и метрики IoU.

В заключение, несмотря на некоторые ошибки в предсказаниях, особенно при работе с нечеткими или сильно загрязненными изображениями, модель показала свою эффективность в условиях ограниченного объема данных и времени на обучение. Дальнейшее улучшение может быть достигнуто за счет настройки гиперпараметров, увеличения объема данных и исследования альтернативных архитектур нейросетей.


Новое на сайте

19011Завершено строительство космического телескопа Nancy Grace Roman для поиска ста тысяч... 19010Вязкость пространства и фононы вакуума как разгадка аномалий расширения вселенной 19009Приведет ли массовое плодоношение дерева Риму к рекордному росту популяции какапо? 19008Как уязвимость CVE-2026-23550 в плагине Modular DS позволяет захватить управление сайтом? 19007Может ли уличная драка французского авантюриста раскрыть кризис американского гражданства... 19006Может ли один клик по легитимной ссылке заставить Microsoft Copilot и другие ИИ тайно... 19005Утрата истинного мастерства в эпоху алгоритмов и скрытые механизмы человеческого... 19004Почему защита самих моделей ИИ становится бессмысленной, если уязвимыми остаются рабочие... 19003Какие устаревшие привычки уничтожают эффективность MTTR вашего SOC в 2026 году? 19002Критическая ошибка в GlobalProtect позволяет удаленно отключить защиту межсетевых экранов... 19001Как дешевые серверы RedVDS стали инструментом глобального мошенничества на 40 миллионов... 19000Являются ли обнаруженные телескопом «Джеймс Уэбб» загадочные объекты «коконами» для... 18999Почему внедрение ИИ-агентов создает скрытые каналы для несанкционированной эскалации... 18998Космический детектив: сверхмассивная черная дыра обрекла галактику Пабло на голодную... 18997Аномальная «звезда-зомби» RXJ0528+2838 генерирует необъяснимую радужную ударную волну