Ssylka

Микроскопическое зрение на солнечную энергию будущего: электронный спиновой резонанс

Перовскитные солнечные элементы признаны перспективным направлением в развитии солнечной энергетики нового поколения. Их привлекательность обусловлена высоким КПД, гибкостью и возможностью нанесения печатными методами, что открывает двери для массового производства и интеграции в различные поверхности. Однако, традиционные перовскитные солнечные элементы используют свинец, токсичный элемент, представляющий серьезную угрозу для окружающей среды и здоровья человека.
Микроскопическое зрение на солнечную энергию будущего: электронный спиновой резонанс
Изображение носит иллюстративный характер

Поиск экологически чистых альтернатив свинцу привел исследователей к олову. Олово, менее токсичный элемент, рассматривается как многообещающая замена свинцу в перовскитных солнечных элементах. Тем не менее, оловянные перовскитные солнечные элементы сталкиваются с проблемой более низкой эффективности и долговечности по сравнению со свинцовыми аналогами. Основная причина заключается в легкой окисляемости олова, что негативно сказывается на стабильности и производительности устройств.

Для решения проблемы стабильности оловянных перовскитов был разработан подход, основанный на использовании перовскитов Раддлесдена-Поппера (РП). Этот метод предполагает введение крупных органических катионов в кристаллическую решетку оловянного перовскита. В результате формируется двухмерная слоистая структура, которая эффективно подавляет окисление олова, тем самым повышая долговечность солнечных элементов.

Группа исследователей из Университета Цукубы провела детальное изучение внутреннего состояния РП перовскитных солнечных элементов в процессе их работы. Целью исследования было микроскопическое понимание механизмов, лежащих в основе улучшения характеристик данных устройств. Для достижения этой цели ученые применили метод электронного спинового резонанса.

Анализ с помощью электронного спинового резонанса в условиях отсутствия светового облучения выявил важные процессы на границе раздела между дырочно-транспортным слоем и РП перовскитом. Было установлено, что дырки диффундируют из дырочно-транспортного слоя в РП перовскит. Эта диффузия приводит к формированию энергетического барьера на указанной границе раздела.

Ключевым результатом стало обнаружение, что сформированный энергетический барьер препятствует обратному потоку электронов. Подавление обратного потока электронов является критически важным для повышения эффективности солнечных элементов, поскольку уменьшает потери заряда и увеличивает ток короткого замыкания.

В условиях имитации солнечного освещения, включая ультрафиолетовое (УФ) излучение, исследователи наблюдали дополнительные эффекты. Под воздействием солнечного света электроны начинают перемещаться из РП перовскита на дырочно-транспортный слой. Этот перенос электронов обусловлен высокоэнергетическими электронами, генерируемыми коротковолновым светом, таким как УФ-излучение.

Перенос электронов под воздействием света приводит к дальнейшему увеличению энергетического барьера на границе раздела между дырочно-транспортным слоем и РП перовскитом. Усиление энергетического барьера еще более эффективно подавляет обратный поток электронов, что, в свою очередь, приводит к повышению эффективности работы солнечного элемента.

Полученные результаты имеют важное значение для понимания механизмов улучшения характеристик РП оловянных перовскитных солнечных элементов. Углубленное понимание процессов, происходящих на микроскопическом уровне, открывает путь к разработке высокоэффективных и долговечных солнечных элементов на основе олова, свободных от токсичного свинца.


Новое на сайте

15287Жидкость, восстанавливающая форму: нарушение законов термодинамики 15286Аркадия ведьм: загадка Чарльза годфри Леланда и её влияние на современную магию 15285Кто станет новым героем Звёздных войн в 2027 году? 15283Ануше Ансари | Почему космические исследования важны для Земли 15282Гизем Гумбуская | Синтетический морфогенез: самоконструирующиеся живые архитектуры по... 15281Как предпринимателю остаться хозяином своей судьбы? 15280Люси: путешествие к древним обломкам солнечной системы 15279Роберт Лиллис: извлеченные уроки для экономически эффективных исследований дальнего... 15278Почему супермен до сих пор остаётся символом надежды и морали? 15277Райан Гослинг в роли нового героя «Звёздных войн»: что известно о фильме Star Wars:... 15276Почему экваториальная Гвинея остаётся одной из самых закрытых и жестоких диктатур мира? 15275Почему морские слизни становятся ярче под солнцем? 15274Глен Вейль | Можем ли мы использовать ИИ для построения более справедливого общества? 15273Лириды: где и как увидеть древний звездопад в этом апреле? 15272Сдержит ли налог на однодневных туристов в Венеции наплыв гостей?