Ssylka

Интеграция LLM и классического ML для поиска домашних животных

Для автоматизации поиска объявлений о пропавших и найденных домашних животных был создан пет-проект. Первоначально скрипт репостил объявления из VK в Telegram-канал. Позже к нему добавилась обработка сообщений из Telegram. Для фильтрации релевантных постов используется LLM, которая извлекает из текста объявления важные признаки в формате JSON. Эти признаки включают тип животного, породу, имя, местоположение, контакты и оценку релевантности объявления теме поиска.
Интеграция LLM и классического ML для поиска домашних животных
Изображение носит иллюстративный характер

Для выбора подходящей модели LLM проводилось тестирование различных вариантов, включая отечественные и зарубежные модели, а также опенсорсные. Было установлено, что Google Gemini 1.5 Flash обеспечивает оптимальное соотношение цены и качества для данной задачи. Полученные от LLM данные используются как входные признаки для обучения классической модели машинного обучения, в частности, Random Forest. Данная модель классифицирует сообщения на релевантные и нерелевантные, на основании этих признаков. Этот этап позволяет отсеять спам и нецелевые объявления.

Для предотвращения повторной публикации дубликатов объявлений используется алгоритм кластеризации. В результате, публикация объявлений автоматизирована и оптимизирована. Сейчас проект агрегирует сообщения из разных источников, выявляет важные признаки, отсеивает лишнее, кластеризует и публикует только релевантные объявления. В дальнейшем планируется разработка интерактивной карты с объявлениями и внедрение поиска по изображениям. Были отмечены некоторые технические нюансы при интеграции, такие как верификация JSON, необходимость использования GPU для LLM, экранирование символов, и оптимизация запросов к БД.


Новое на сайте

19107Почему обнаружение гробницы владыки внутри скульптуры совы стало главным археологическим... 19106Масштабная фишинговая операция использует легальный софт для шпионажа за... 19105Шпионская кампания MaliciousCorgi в VS Code и критические уязвимости PackageGate 19104Способен ли новый чип Maia 200 от Microsoft опередить конкурентов и изменить будущее ИИ? 19103Как 20-мильная прогулка домохозяйки Лоры секор изменила ход войны 1812 года? 19102Архитектура разобщенности и шесть точек опоры в отчете US Chamber of Connection 2026 года 19101Технологичный всепогодный бинокль Canon 18x50 IS UD с активной стабилизацией для... 19100Почему «наступательный ИИ» легко обходит EDR и какая комбинированная стратегия защиты... 19099Варненское золото и истоки первой цивилизации Европы 19098Тихая пандемия: четыре ключевых тренда в борьбе с устойчивостью к антибиотикам 19097Где можно будет наблюдать «затмение века» и ближайшие полные солнечные затмения? 19096Может ли высыхание озер ускорить раскол африканской тектонической плиты? 19095Возрождение Google Glass и новая эра AI Glasses: стратегия 2026 года и уроки прошлого 19094Телескоп Джеймс Уэбб раскрыл тайны происхождения жизни в туманности улитка 19093Загадка лунной иллюзии и нейробиологические причины искажения восприятия размера