Ssylka

Интеграция LLM и классического ML для поиска домашних животных

Для автоматизации поиска объявлений о пропавших и найденных домашних животных был создан пет-проект. Первоначально скрипт репостил объявления из VK в Telegram-канал. Позже к нему добавилась обработка сообщений из Telegram. Для фильтрации релевантных постов используется LLM, которая извлекает из текста объявления важные признаки в формате JSON. Эти признаки включают тип животного, породу, имя, местоположение, контакты и оценку релевантности объявления теме поиска.
Интеграция LLM и классического ML для поиска домашних животных
Изображение носит иллюстративный характер

Для выбора подходящей модели LLM проводилось тестирование различных вариантов, включая отечественные и зарубежные модели, а также опенсорсные. Было установлено, что Google Gemini 1.5 Flash обеспечивает оптимальное соотношение цены и качества для данной задачи. Полученные от LLM данные используются как входные признаки для обучения классической модели машинного обучения, в частности, Random Forest. Данная модель классифицирует сообщения на релевантные и нерелевантные, на основании этих признаков. Этот этап позволяет отсеять спам и нецелевые объявления.

Для предотвращения повторной публикации дубликатов объявлений используется алгоритм кластеризации. В результате, публикация объявлений автоматизирована и оптимизирована. Сейчас проект агрегирует сообщения из разных источников, выявляет важные признаки, отсеивает лишнее, кластеризует и публикует только релевантные объявления. В дальнейшем планируется разработка интерактивной карты с объявлениями и внедрение поиска по изображениям. Были отмечены некоторые технические нюансы при интеграции, такие как верификация JSON, необходимость использования GPU для LLM, экранирование символов, и оптимизация запросов к БД.


Новое на сайте

19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа 19149Как новая волна голосового фишинга в стиле ShinyHunters обходит многофакторную... 19148Почему баски стали главными пастухами Америки: врожденный дар или расовый миф? 19147Бывший инженер Google осужден за экономический шпионаж и передачу секретов искусственного... 19146Насколько критичны новые уязвимости SmarterMail и почему их немедленное исправление... 19145Истинный контроль и природа человеческого мастерства: от учения эпиктета до современной... 19144Критические уязвимости нулевого дня в Ivanti EPMM активно эксплуатируются злоумышленниками 19143Почему биология и социальное давление толкают элиту на смертельный риск ради славы и... 19142Почему сотни энергетических объектов по всему миру остаются критически уязвимыми перед...