Система подбора вакансий и кандидатов использует анализ текста резюме и вакансий для сопоставления требований и навыков. Для этого применяется RAG-модель, которая анализирует данные из векторной базы данных. Применяются техники обработки естественного языка для структурирования данных и извлечения ключевой информации, такой как опыт работы, навыки, образование и тип занятости. Для анализа используются векторные представления, включая dense и sparse вектора, что повышает точность поиска релевантных документов.
Первоначальные результаты показали, что использование только плотных векторов (например, deepvk/USER-bge-m3) дает неплохие результаты, но гибридный подход на основе «матрёшечного» ранжирования, сочетающего dense и sparse вектора (bm25 и Tochka-AI/ruRoPEBert-e5-base-2k) значительно улучшил метрики, в частности MAP@10 и Recall@10. В качестве мультиагентной системы используется LangGraph, где каждый агент отвечает за конкретную задачу, начиная от классификации текста и заканчивая генерацией ответа пользователю.
Backend реализован на FastAPI для обработки запросов загрузки документов и получения результатов. Frontend на Angular позволяет загружать резюме и вакансии в текстовом формате, pdf и docx. Пользователь после обработки получает отранжированный список релевантных вакансий. Несмотря на достигнутые успехи в ранжировании, система еще нуждается в улучшениях.
Необходимо более глубокое понимание контекста, так как формальное перечисление навыков не отражает их уровень, поскольку сложность и время освоения могут значительно различаться. Например, SQL и SSH требуют разного уровня подготовки. Также, стоит обратить внимание на взаимосвязи навыков, так как наличие одного навыка может подразумевать наличие других, связанных с ним. И еще, необходимо уделить внимание обработке полей с малым количеством контента. В перспективе, использование bert-like моделей для NER и оптимизация vLLM могут ускорить обработку данных.
Изображение носит иллюстративный характер
Первоначальные результаты показали, что использование только плотных векторов (например, deepvk/USER-bge-m3) дает неплохие результаты, но гибридный подход на основе «матрёшечного» ранжирования, сочетающего dense и sparse вектора (bm25 и Tochka-AI/ruRoPEBert-e5-base-2k) значительно улучшил метрики, в частности MAP@10 и Recall@10. В качестве мультиагентной системы используется LangGraph, где каждый агент отвечает за конкретную задачу, начиная от классификации текста и заканчивая генерацией ответа пользователю.
Backend реализован на FastAPI для обработки запросов загрузки документов и получения результатов. Frontend на Angular позволяет загружать резюме и вакансии в текстовом формате, pdf и docx. Пользователь после обработки получает отранжированный список релевантных вакансий. Несмотря на достигнутые успехи в ранжировании, система еще нуждается в улучшениях.
Необходимо более глубокое понимание контекста, так как формальное перечисление навыков не отражает их уровень, поскольку сложность и время освоения могут значительно различаться. Например, SQL и SSH требуют разного уровня подготовки. Также, стоит обратить внимание на взаимосвязи навыков, так как наличие одного навыка может подразумевать наличие других, связанных с ним. И еще, необходимо уделить внимание обработке полей с малым количеством контента. В перспективе, использование bert-like моделей для NER и оптимизация vLLM могут ускорить обработку данных.