Интеллектуальный помощник по подбору вакансий: анализ и улучшения

Система подбора вакансий и кандидатов использует анализ текста резюме и вакансий для сопоставления требований и навыков. Для этого применяется RAG-модель, которая анализирует данные из векторной базы данных. Применяются техники обработки естественного языка для структурирования данных и извлечения ключевой информации, такой как опыт работы, навыки, образование и тип занятости. Для анализа используются векторные представления, включая dense и sparse вектора, что повышает точность поиска релевантных документов.
Интеллектуальный помощник по подбору вакансий: анализ и улучшения
Изображение носит иллюстративный характер

Первоначальные результаты показали, что использование только плотных векторов (например, deepvk/USER-bge-m3) дает неплохие результаты, но гибридный подход на основе «матрёшечного» ранжирования, сочетающего dense и sparse вектора (bm25 и Tochka-AI/ruRoPEBert-e5-base-2k) значительно улучшил метрики, в частности MAP@10 и Recall@10. В качестве мультиагентной системы используется LangGraph, где каждый агент отвечает за конкретную задачу, начиная от классификации текста и заканчивая генерацией ответа пользователю.

Backend реализован на FastAPI для обработки запросов загрузки документов и получения результатов. Frontend на Angular позволяет загружать резюме и вакансии в текстовом формате, pdf и docx. Пользователь после обработки получает отранжированный список релевантных вакансий. Несмотря на достигнутые успехи в ранжировании, система еще нуждается в улучшениях.

Необходимо более глубокое понимание контекста, так как формальное перечисление навыков не отражает их уровень, поскольку сложность и время освоения могут значительно различаться. Например, SQL и SSH требуют разного уровня подготовки. Также, стоит обратить внимание на взаимосвязи навыков, так как наличие одного навыка может подразумевать наличие других, связанных с ним. И еще, необходимо уделить внимание обработке полей с малым количеством контента. В перспективе, использование bert-like моделей для NER и оптимизация vLLM могут ускорить обработку данных.


Новое на сайте

19164Уязвимые обучающие приложения открывают доступ к облакам Fortune 500 для криптомайнинга 19163Почему ботнет SSHStalker успешно атакует Linux уязвимостями десятилетней давности? 19162Microsoft устранила шесть уязвимостей нулевого дня и анонсировала радикальные изменения в... 19161Эскалация цифровой угрозы: как IT-специалисты КНДР используют реальные личности для... 19160Скрытые потребности клиентов и преимущество наблюдения над опросами 19159Академическое фиаско Дороти Паркер в Лос-Анджелесе 19158Китайский шпионский фреймворк DKnife захватывает роутеры с 2019 года 19157Каким образом корейские детские хоры 1950-х годов превратили геополитику в музыку и... 19156Научная революция цвета в женской моде викторианской эпохи 19155Как новый сканер Microsoft обнаруживает «спящих агентов» в открытых моделях ИИ? 19154Как новая кампания DEADVAX использует файлы VHD для скрытой доставки трояна AsyncRAT? 19153Как новые китайские киберкампании взламывают госструктуры Юго-Восточной Азии? 19152Культ священного манго и закат эпохи хунвейбинов в маоистском Китае 19151Готовы ли вы к эре коэффициента адаптивности, когда IQ и EQ больше не гарантируют успех? 19150Иранская группировка RedKitten применяет сгенерированный нейросетями код для кибершпионажа
Ссылка