Ssylka

Расширенный анализ Netflow: выявление приложений и аномалий

Традиционный Netflow не всегда эффективен для выявления специфических приложений или вредоносной активности из-за ограниченного набора полей. Автор разработал расширенную версию, "extended netflow", которая включает в себя гораздо больше параметров, таких как длина пакета, энтропия нагрузки, межпакетные интервалы и флаги TCP. Для каждого параметра вычисляются различные статистические характеристики, как минимум, максимальное и минимальное значение, разброс, среднее арифметическое, дисперсию и стандартное отклонение. Полученные таким образом данные могут быть использованы для обнаружения работы приложений, вредоносного ПО и инструментов redteam, а также могут быть преобразованы в звук для визуализации через спектрограммы.
Расширенный анализ Netflow: выявление приложений и аномалий
Изображение носит иллюстративный характер

Для идентификации трафика, относящегося к конкретному приложению, был использован простой, но эффективный метод: сопоставление DNS-запросов с активностью приложений в определенный период времени. Полученные данные использовались для обучения моделей машинного обучения, в частности, random forest. Этот метод продемонстрировал высокую точность обнаружения различных приложений и вредоносного ПО, включая Cobaltstrike, а также такие приложения, как Сбербанк, Wildberries и Альфабанк. Тестирование показало, что модели способны обнаруживать трафик даже тех приложений и вредоносного ПО, которые не использовались в процессе обучения, и определять активность отдельных функций этих приложений.

Extended netflow может быть применен для анализа влияния канала связи на трафик приложения, обнаружения сетевой активности, исследования сетевой составляющей приложений и создания сетевых профилей устройств или пользователей. Эта информация может использоваться как дополнительный источник для SIEM-систем, XDR и других средств защиты, а также для исследования телеметрии устройств. В будущем автор планирует использовать сверточные нейросети для анализа состояний потока и их изменений, что должно повысить точность определения конкретных функций приложений и API, а также оптимизировать приложение с помощью DPDK и CUDA.

Однако, как показали комментарии к статье, этот метод не является абсолютно надежным и зависит от конкретных особенностей сетевой инфраструктуры. VPN трафик эффективно прячется от обнаружения моделями, а результаты обучения могут варьироваться в зависимости от провайдера, точки сбора трафика и сетевых интерфейсов. Несмотря на это, автор предполагает, что, контролируя размеры пакетов и межпакетные интервалы, можно усложнить обнаружение активности. Кроме того, на основе результатов статьи и комментариев к ней можно обучать модели машинного обучения для обнаружения аномального или подозрительного трафика.


Новое на сайте

18607Золотой распад кометы ATLAS C/2025 K1 18606Секретный бренд древнего Рима на стеклянных шедеврах 18605Смогут ли чипсы без искусственных красителей сохранить свой знаменитый вкус? 18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли