Ssylka

Улучшение прогнозирования в Ритейле с помощью декомпозиции и Temporal Fusion Transformer

Модель Temporal Fusion Transformer (TFT) успешно применяется для прогнозирования в ритейле, особенно когда нужно учитывать сложные взаимодействия и внешние факторы. Статья демонстрирует, как эта модель, использованная для прогнозирования розничного товарооборота и трафика, может повысить точность прогнозов примерно на 7%. TFT автоматически извлекает признаки, обрабатывает как одномерные, так и многомерные временные ряды, а также масштабируется для большого количества объектов, что делает ее подходящей для ритейла.
Улучшение прогнозирования в Ритейле с помощью декомпозиции и Temporal Fusion Transformer
Изображение носит иллюстративный характер

TFT учитывает нелинейные зависимости, автоматически извлекает признаки, включая временные, статические и динамические, и работает с многомерными временными рядами. Она позволяет учитывать прошлые, будущие и статические ковариаты, включая праздники, промоакции и даже прогнозы от других моделей, что улучшает общую точность предсказаний. Архитектура TFT включает в себя Gated Residual Network (GRN), Variable Selection Network (VSN), LSTM энкодер-декодер и интерпретируемый механизм Multi-Head Attention. Это позволяет модели не только делать точные прогнозы, но и интерпретировать их, что важно для бизнеса.
Для подготовки данных применяются различные техники, такие как нормализация и стандартизация временных рядов, а также обработка статических ковариат. Оптимальная длина энкодера, важная для качества прогнозов, может быть выбрана, исходя из анализа данных с помощью функции автокорреляции (ACF). В статье подчеркивается важность разделения временных рядов на обучающие, валидационные и тестовые наборы, с учетом хронологической последовательности событий.
В комментариях предлагается дополнить подход декомпозицией временных рядов, выделяя квазидетерминированные компоненты, такие как сезонность и тренды, с последующим моделированием остаточных составляющих. Этот метод, применяемый в геофизике, может дополнительно повысить точность прогнозирования, особенно в случаях, когда данных немного. Такой подход подразумевает построение отдельных моделей для каждой выделенной составляющей с последующим их объединением в общую модель, что позволяет улучшить точность, но увеличивает сложность и время обработки.


Новое на сайте

18899Что приготовила луна на 2026 год: когда наблюдать 13 полнолуний, кровавое затмение и... 18898Глобальная кампания кибершпионажа DarkSpectre скомпрометировала миллионы браузеров в... 18897Действительно ли человечеству необходимо колонизировать другие миры? 18896Особенности наблюдения метеорного потока квадрантиды в условиях январского полнолуния 18895Каменные пирамиды раздора и наследие «мясника Гипсленда» в Австралии 18894Критическая уязвимость в IBM API Connect с рейтингом 9.8 угрожает безопасности глобальных... 18893Эволюция киберугроз в npm и Maven: самораспространяющийся червь Shai-Hulud и поддельный... 18892Уникальная перуанская трофейная голова указывает на сакральный статус людей с врожденными... 18891Как аномально «гладкое» землетрясение в Мьянме меняет прогнозы для грядущего катаклизма в... 18890США неожиданно сняли санкции с ключевых фигур разработчика шпионского по Predator 18889Является ли современный искусственный интеллект похищенным огнем Прометея или лишь новой... 18888Чем угрожает почтовым серверам критическая уязвимость максимального уровня в SmarterMail? 18887Действительно ли возвращение волков стало единственной причиной восстановления экосистемы... 18886Как идеологические убеждения офицеров влияли на жестокость репрессий во время «грязной... 18885Революционная вакцина от фентанила переходит к первым клиническим испытаниям