Ssylka

Улучшение прогнозирования в Ритейле с помощью декомпозиции и Temporal Fusion Transformer

Модель Temporal Fusion Transformer (TFT) успешно применяется для прогнозирования в ритейле, особенно когда нужно учитывать сложные взаимодействия и внешние факторы. Статья демонстрирует, как эта модель, использованная для прогнозирования розничного товарооборота и трафика, может повысить точность прогнозов примерно на 7%. TFT автоматически извлекает признаки, обрабатывает как одномерные, так и многомерные временные ряды, а также масштабируется для большого количества объектов, что делает ее подходящей для ритейла.
Улучшение прогнозирования в Ритейле с помощью декомпозиции и Temporal Fusion Transformer
Изображение носит иллюстративный характер

TFT учитывает нелинейные зависимости, автоматически извлекает признаки, включая временные, статические и динамические, и работает с многомерными временными рядами. Она позволяет учитывать прошлые, будущие и статические ковариаты, включая праздники, промоакции и даже прогнозы от других моделей, что улучшает общую точность предсказаний. Архитектура TFT включает в себя Gated Residual Network (GRN), Variable Selection Network (VSN), LSTM энкодер-декодер и интерпретируемый механизм Multi-Head Attention. Это позволяет модели не только делать точные прогнозы, но и интерпретировать их, что важно для бизнеса.
Для подготовки данных применяются различные техники, такие как нормализация и стандартизация временных рядов, а также обработка статических ковариат. Оптимальная длина энкодера, важная для качества прогнозов, может быть выбрана, исходя из анализа данных с помощью функции автокорреляции (ACF). В статье подчеркивается важность разделения временных рядов на обучающие, валидационные и тестовые наборы, с учетом хронологической последовательности событий.
В комментариях предлагается дополнить подход декомпозицией временных рядов, выделяя квазидетерминированные компоненты, такие как сезонность и тренды, с последующим моделированием остаточных составляющих. Этот метод, применяемый в геофизике, может дополнительно повысить точность прогнозирования, особенно в случаях, когда данных немного. Такой подход подразумевает построение отдельных моделей для каждой выделенной составляющей с последующим их объединением в общую модель, что позволяет улучшить точность, но увеличивает сложность и время обработки.


Новое на сайте

19148Почему баски стали главными пастухами Америки: врожденный дар или расовый миф? 19147Бывший инженер Google осужден за экономический шпионаж и передачу секретов искусственного... 19146Насколько критичны новые уязвимости SmarterMail и почему их немедленное исправление... 19145Истинный контроль и природа человеческого мастерства: от учения эпиктета до современной... 19144Критические уязвимости нулевого дня в Ivanti EPMM активно эксплуатируются злоумышленниками 19143Почему биология и социальное давление толкают элиту на смертельный риск ради славы и... 19142Почему сотни энергетических объектов по всему миру остаются критически уязвимыми перед... 19141Возможен ли бесконечный полет дронов благодаря новой системе лазерной подзарядки? 19140Химический анализ впервые подтвердил использование человеческих экскрементов в римской... 19139Как искусственный интеллект AnomalyMatch всего за два дня обнаружил 1300 неизвестных... 19138Какие три стратегических решения директора по информационной безопасности предотвратят... 19137Почему обнаруженные в SolarWinds Web Help Desk критические уязвимости требуют... 19136Древнейшие в мире ручные деревянные орудия возрастом 430 000 лет обнаружены в Греции 19135Как древнейший генетический диагноз раскрыл тайну жизни подростка-инвалида в каменном... 19134Способны ли новые рои искусственного интеллекта незаметно захватить человеческое сознание?