Ssylka

Улучшение прогнозирования в Ритейле с помощью декомпозиции и Temporal Fusion Transformer

Модель Temporal Fusion Transformer (TFT) успешно применяется для прогнозирования в ритейле, особенно когда нужно учитывать сложные взаимодействия и внешние факторы. Статья демонстрирует, как эта модель, использованная для прогнозирования розничного товарооборота и трафика, может повысить точность прогнозов примерно на 7%. TFT автоматически извлекает признаки, обрабатывает как одномерные, так и многомерные временные ряды, а также масштабируется для большого количества объектов, что делает ее подходящей для ритейла.
Улучшение прогнозирования в Ритейле с помощью декомпозиции и Temporal Fusion Transformer
Изображение носит иллюстративный характер

TFT учитывает нелинейные зависимости, автоматически извлекает признаки, включая временные, статические и динамические, и работает с многомерными временными рядами. Она позволяет учитывать прошлые, будущие и статические ковариаты, включая праздники, промоакции и даже прогнозы от других моделей, что улучшает общую точность предсказаний. Архитектура TFT включает в себя Gated Residual Network (GRN), Variable Selection Network (VSN), LSTM энкодер-декодер и интерпретируемый механизм Multi-Head Attention. Это позволяет модели не только делать точные прогнозы, но и интерпретировать их, что важно для бизнеса.
Для подготовки данных применяются различные техники, такие как нормализация и стандартизация временных рядов, а также обработка статических ковариат. Оптимальная длина энкодера, важная для качества прогнозов, может быть выбрана, исходя из анализа данных с помощью функции автокорреляции (ACF). В статье подчеркивается важность разделения временных рядов на обучающие, валидационные и тестовые наборы, с учетом хронологической последовательности событий.
В комментариях предлагается дополнить подход декомпозицией временных рядов, выделяя квазидетерминированные компоненты, такие как сезонность и тренды, с последующим моделированием остаточных составляющих. Этот метод, применяемый в геофизике, может дополнительно повысить точность прогнозирования, особенно в случаях, когда данных немного. Такой подход подразумевает построение отдельных моделей для каждой выделенной составляющей с последующим их объединением в общую модель, что позволяет улучшить точность, но увеличивает сложность и время обработки.


Новое на сайте

19026Станет ли бактериальная система самоуничтожения SPARDA более гибким инструментом... 19025Насколько опасной и грязной была вода в древнейших банях Помпей? 19024Гравитационная ориентация и структура космических плоскостей от земли до сверхскоплений 19023Сколько частей тела и органов можно потерять, чтобы остаться в живых? 19022Зачем Сэм Альтман решил внедрить рекламу в бесплатные версии ChatGPT? 19021Хитроумная маскировка вредоноса GootLoader через тысячи склеенных архивов 19020Удастся ли знаменитому археологу Захи Хавассу найти гробницу Нефертити до ухода на покой? 19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и... 19018Генетический анализ мумий гепардов из саудовской Аравии открыл путь к возрождению... 19017Вредоносная кампания в Chrome перехватывает управление HR-системами и блокирует... 19016Глубоководные оползни раскрыли историю мегаземлетрясений зоны Каскадия за 7500 лет 19015Насколько глубоки ваши познания об эволюции и происхождении человека? 19014Как уязвимость CodeBreach в AWS CodeBuild могла привести к глобальной атаке через ошибку... 19013Затерянный фрагмент древней плиты пионер меняет карту сейсмических угроз Калифорнии 19012Генетические мутации вызывают слепоту менее чем в 30% случаев вопреки прежним прогнозам