Ssylka

Квантовый компьютер совершил прорыв в моделировании физики элементарных частиц

Исследователи достигли значительного прогресса в области квантовых вычислений, успешно смоделировав полную квантовую теорию поля в более чем одном пространственном измерении с использованием инновационного типа квантового компьютера. Это достижение стало результатом сотрудничества экспериментальной группы Мартина Рингбауэра из Инсбрукского университета и теоретической группы Кристин Мушик из Института квантовых вычислений (IQC) Университета Ватерлоо в Канаде.
Квантовый компьютер совершил прорыв в моделировании физики элементарных частиц
Изображение носит иллюстративный характер

Исследование, опубликованное в престижном журнале Nature Physics, демонстрирует уникальное применение кудитного квантового компьютера, разработанного в Инсбруке. В отличие от традиционных квантовых компьютеров, которые работают с кубитами (двоичными значениями 0 и 1), кудитный компьютер использует до пяти значений на каждый носитель квантовой информации. Этот подход, разработанный в Ватерлоо, обеспечивает «естественное представление квантовых полей», что значительно повышает эффективность вычислений.

Стандартная модель физики элементарных частиц описывает частицы и античастицы как квантовые поля. Однако квантовые теории поля обычно слишком сложны для моделирования на обычных суперкомпьютерах. Традиционные двоичные вычисления испытывают трудности при представлении силовых полей с различными направлениями и интенсивностью, что делает квантовый подход особенно ценным.

В ходе эксперимента ученые наблюдали фундаментальные особенности квантовой электродинамики в двух пространственных измерениях. Особенно важно, что им удалось продемонстрировать магнитные поля между частицами, что невозможно в одномерных симуляциях. Это достижение развивает результаты демонстрации 2016 года в Инсбруке, когда были смоделированы пары частица-античастица, но только в одном измерении.

Новый алгоритм для кудитов, разработанный командой из Ватерлоо, позволил исследователям эффективно моделировать взаимодействия фундаментальных частиц. Благодаря использованию многоуровневых квантовых состояний, ученые смогли более точно воспроизвести сложные квантовые поля, что значительно расширяет возможности квантового моделирования.

Потенциал этой технологии впечатляет: исследователи утверждают, что с добавлением всего нескольких дополнительных кудитов можно будет расширить моделирование до трех пространственных измерений. Кроме того, данный подход может быть применен для изучения сильного ядерного взаимодействия, что открывает новые возможности для исследования фундаментальных вопросов физики.

«Мы в восторге от потенциала квантовых компьютеров для изучения этих увлекательных вопросов», – отмечает Мартин Рингбауэр, подчеркивая значимость достигнутого прорыва. Это исследование демонстрирует, как квантовые вычисления могут преодолеть ограничения классических компьютеров в моделировании сложных физических систем, приближая нас к более глубокому пониманию фундаментальных законов природы.


Новое на сайте

18607Золотой распад кометы ATLAS C/2025 K1 18606Секретный бренд древнего Рима на стеклянных шедеврах 18605Смогут ли чипсы без искусственных красителей сохранить свой знаменитый вкус? 18604Является ли рекордная скидка на Garmin Instinct 3 Solar лучшим предложением ноября? 18603Могла ли детская смесь ByHeart вызвать национальную вспышку ботулизма? 18602Готовы ли банки доверить агентскому ИИ управление деньгами клиентов? 18601Как сезонные ветры создают миллионы загадочных полос на Марсе? 18600Как тело человека превращается в почву за 90 дней? 18599Как ваш iPhone может заменить паспорт при внутренних перелетах по США? 18598Мозговой шторм: что происходит, когда мозг отключается от усталости 18597Раскрыта асимметричная форма рождения сверхновой 18596Скидки Ninja: как получить идеальную корочку и сэкономить на доставке 18595Почему работа на нескольких работах становится новой нормой? 18594Записная книжка против нейросети: ценность медленного мышления 18593Растущая брешь в магнитном щите земли