Ssylka

Как ионные пары с золотыми комплексами меняют будущее органической электроники?

Исследовательская группа под руководством профессора Хиромицу Маэда из Университета Рицумэйкан совершила значительный прорыв в области органической электроники. Ученые разработали новую систему, решающую одну из ключевых проблем π-электронных систем с расширенными π-плоскостями: несмотря на их превосходные электронные свойства, такие материалы традиционно страдают от плохой растворимости, высокой кристалличности и сложностей в обработке и сборке.
Как ионные пары с золотыми комплексами меняют будущее органической электроники?
Изображение носит иллюстративный характер

Исследовательская команда, в которую также вошли доцент Йохей Хакета из Университета Рицумэйкан, профессор Шу Секи из Киотского университета и профессор Го Ватанабе из Университета Китасато, опубликовала свои результаты в престижном журнале Chemical Science. Ученые синтезировали инновационную органическую электронную систему, используя комплексы золота (AuIII) и молекулы бензопорфирина, что позволило значительно улучшить как растворимость, так и проводимость материала.

π-электронные системы представляют собой молекулярные структуры с делокализованными π-электронами, которые обеспечивают эффективный транспорт заряда и широко используются в органических полупроводниках. Однако их применение ограничивается низкой растворимостью, что затрудняет их обработку и интеграцию в электронные устройства.

Методология исследования основывалась на использовании ионного спаривания π-электронной системы на основе катионов. Исследователи синтезировали комплекс бензопорфирина с AuIII (расширенный π-электронный катион) и соединили эти катионы с четырьмя различными объемными противоионами: PF6-, FABA-, BArF- и PCCp-. Полученные материалы были тщательно проанализированы с помощью рентгеновской дифракции, твердотельного ЯМР и молекулярно-динамического моделирования.

Результаты показали, что ионные пары собирались в двух полиморфных состояниях. Первое состояние – монокристаллическое, формирующееся при контролируемой кристаллизации и характеризующееся высокоупорядоченным расположением молекул и жесткой кристаллической структурой. Второе состояние – менее кристаллическое (LeC), образующееся путем перекристаллизации в определенных растворителях и отличающееся менее упорядоченным расположением молекул. Примечательно, что оба типа материалов демонстрировали электрическую проводимость с настраиваемыми свойствами.

Значимость этого исследования трудно переоценить. Разработанный подход позволяет осуществлять обработку проводящих материалов в растворе, что открывает путь к созданию нового поколения органических полупроводников. Потенциальные применения включают электронные схемы, датчики и технологии хранения энергии.

«Наше исследование демонстрирует, что ионное спаривание может быть эффективным инструментом для улучшения свойств π-электронных систем, преодолевая традиционные ограничения этих материалов,» – отметил профессор Маэда в своей публикации.

Дальнейшие исследования будут направлены на совершенствование молекулярного дизайна, оптимизацию свойств транспорта заряда и изучение практических применений этих материалов. Ученые полагают, что их открытие может стать ключевым шагом в развитии более эффективных, гибких и доступных органических электронных устройств.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года