Отношение Лиддане-Сакс-Теллера, впервые сформулированное в 1941 году, исторически связывало статический и динамический диэлектрические отклики кристаллических решеток с их вибрационными резонансными частотами. Исследования в этой сфере способствовали развитию теории электронных устройств и материаловедения.

Команда ученых из Lund University значительно расширила представления о материале, обнаружив магнитный эквивалент данного соотношения. Новый подход устанавливает связь между статической магнитной проницаемостью и частотами магнитного резонанса, а их результаты опубликованы в Physical Review Letters.
В центре исследования находится Виктор Риндерт, который, вдохновленный идеями своего научного руководителя, профессора Матиаса Шуберта, предложил аналогичный принцип в области магнитных взаимодействий. По его словам, «новое соотношение связывает магнитные резонансные частоты материала со статической магнитной проницаемостью».
Для достижения поставленных целей была разработана инновационная методика с использованием терахерцового эллипсометра, способного фиксировать отклик поляризации. Применение метода THz-EPR-GSE в сочетании с проверкой данных с помощью SQUID-магнетометрии обеспечило высокую точность измерений.
Эксперимент проводился на образце галлий нитрида (GaN), легированного железом. Результаты, полученные с использованием оптического метода THz-EPR-GSE, подтвердили существование магнитного эквивалента отношения Лиддане-Сакс-Теллера.
Новое соотношение открывает возможности для глубокого анализа магнитных возбуждений в полупроводниках и других магнитных материалах, что может стать ключевым этапом в разработке передовых электронных компонентов.
Использование THz-EPR-GSE позволяет не только исследовать классические магнитные резонансы, но и изучать сложные явления в области магнитооптики, включая особенности антимагнитных и альтермагнитных материалов, а также параметрические дефекты в сверхширокозонных полупроводниках.
Результаты работы демонстрируют потенциал для повышения эффективности силовой электроники за счет лучшего понимания фундаментальных процессов в материалах, что обеспечивает надежное научное обоснование для дальнейших технологических инноваций.
Достижения Lund University иллюстрируют новое направление в исследовании материалов, где теоретические принципы находят практическое применение, прокладывая путь к созданию более совершенных и стабильных электронных устройств.

Изображение носит иллюстративный характер
Команда ученых из Lund University значительно расширила представления о материале, обнаружив магнитный эквивалент данного соотношения. Новый подход устанавливает связь между статической магнитной проницаемостью и частотами магнитного резонанса, а их результаты опубликованы в Physical Review Letters.
В центре исследования находится Виктор Риндерт, который, вдохновленный идеями своего научного руководителя, профессора Матиаса Шуберта, предложил аналогичный принцип в области магнитных взаимодействий. По его словам, «новое соотношение связывает магнитные резонансные частоты материала со статической магнитной проницаемостью».
Для достижения поставленных целей была разработана инновационная методика с использованием терахерцового эллипсометра, способного фиксировать отклик поляризации. Применение метода THz-EPR-GSE в сочетании с проверкой данных с помощью SQUID-магнетометрии обеспечило высокую точность измерений.
Эксперимент проводился на образце галлий нитрида (GaN), легированного железом. Результаты, полученные с использованием оптического метода THz-EPR-GSE, подтвердили существование магнитного эквивалента отношения Лиддане-Сакс-Теллера.
Новое соотношение открывает возможности для глубокого анализа магнитных возбуждений в полупроводниках и других магнитных материалах, что может стать ключевым этапом в разработке передовых электронных компонентов.
Использование THz-EPR-GSE позволяет не только исследовать классические магнитные резонансы, но и изучать сложные явления в области магнитооптики, включая особенности антимагнитных и альтермагнитных материалов, а также параметрические дефекты в сверхширокозонных полупроводниках.
Результаты работы демонстрируют потенциал для повышения эффективности силовой электроники за счет лучшего понимания фундаментальных процессов в материалах, что обеспечивает надежное научное обоснование для дальнейших технологических инноваций.
Достижения Lund University иллюстрируют новое направление в исследовании материалов, где теоретические принципы находят практическое применение, прокладывая путь к созданию более совершенных и стабильных электронных устройств.