Ssylka

Как магнитный порядок управляет квантовыми состояниями в хром-сульфид-бромиде?

Международная группа ученых из Университета Регенсбурга и Мичиганского университета совершила прорыв в понимании управления квантовыми состояниями в слоистых материалах. В исследовании, опубликованном в журнале Nature, описан новый метод контроля экситонов в хром-сульфид-бромиде.
Как магнитный порядок управляет квантовыми состояниями в хром-сульфид-бромиде?
Изображение носит иллюстративный характер

Материал демонстрирует уникальную способность кодировать информацию четырьмя различными способами: через электрический заряд, фотоны, магнетизм и фононы. Толщиной всего в несколько атомов, хром-сульфид-бромид проявляет remarkable свойства при температуре ниже 132 градусов Кельвина (-222 градуса по Фаренгейту).

При охлаждении ниже пороговой температуры слои материала приобретают антиферромагнитную структуру, где магнитные поля чередуются между слоями. В этом состоянии экситоны оказываются confined в пределах одного атомного слоя. При более высоких температурах материал теряет магнитное упорядочение, и экситоны могут свободно перемещаться в трех измерениях.

Исследовательская команда под руководством профессора Макилло Киры и профессора Руперта Хубера использовала инфракрасные световые импульсы длительностью 20 квадриллионных долей секунды для изучения поведения экситонов. Дополнительный инфракрасный лазер применялся для манипуляции энергетическими состояниями.

Исследователи, включая научного сотрудника Маттиаса Флориана и аспиранта Марлен Либих, обнаружили два типа экситонов с различными энергетическими уровнями. Их поведение зависит от направления движения в материале и может контролироваться внешними магнитными полями или изменением температуры.

Эксперименты проводились в сотрудничестве с учеными из Пражского университета химии и технологии и Дрезденского технического университета. Исследователи продемонстрировали возможность точного управления квантовыми состояниями экситонов путем изменения магнитного порядка в материале.

Открываются новые перспективы для квантовых вычислений, квантовых сенсоров и систем хранения информации. Особенно важна возможность преобразования квантовой информации между фотонами, экситонами и спинами, что может стать основой для создания новых квантовых устройств.


Новое на сайте

18884Знаете ли вы, что приматы появились до вымирания динозавров, и готовы ли проверить свои... 18883Четыреста колец в туманности эмбрион раскрыли тридцатилетнюю тайну звездной эволюции 18882Телескоп Джеймс Уэбб раскрыл тайны сверхэффективной звездной фабрики стрелец B2 18881Математический анализ истинного количества сквозных отверстий в человеческом теле 18880Почему даже элитные суперраспознаватели проваливают тесты на выявление дипфейков без... 18879Шесть легендарных древних городов и столиц империй, местоположение которых до сих пор... 18878Обзор самых необычных медицинских диагнозов и клинических случаев 2025 года 18877Критическая уязвимость CVE-2025-14847 в MongoDB открывает удаленный доступ к памяти... 18876Научное обоснование классификации солнца как желтого карлика класса G2V 18875Как безграничная преданность горным гориллам привела Дайан Фосси к жестокой гибели? 18874Новый родственник спинозавра из Таиланда меняет представления об эволюции хищников Азии 18873Как новая электрохимическая технология позволяет удвоить добычу водорода и снизить... 18872Могут ли ледяные гиганты Уран и Нептун на самом деле оказаться каменными? 18871Внедрение вредоносного кода в расширение Trust Wallet привело к хищению 7 миллионов... 18870Проверка клинического мышления на основе редких медицинских случаев 2025 года