Ssylka

Как тёмное состояние ядерных спинов может изменить квантовые вычисления?

Исследователи из Университета Рочестера совершили прорыв в области квантовых вычислений, экспериментально подтвердив существование тёмного состояния ядерных спинов в кремниевых квантовых точках. Это открытие, опубликованное в журнале Nature Physics, может значительно улучшить стабильность квантовых компьютеров.
Как тёмное состояние ядерных спинов может изменить квантовые вычисления?
Изображение носит иллюстративный характер

В основе современных квантовых вычислений лежат кубиты – квантовые биты, способные находиться одновременно в нескольких состояниях. Однако их главной проблемой является декогеренция – нежелательное взаимодействие с окружающей средой, разрушающее квантовые состояния.

Команда под руководством Джона Никола использовала кремниевый полупроводник с системой двойных квантовых точек, где отдельные электроны удерживаются с помощью электрических полей. Учёные применили специальные импульсы напряжения для манипуляции спинами электронов.

Ключевым достижением стала успешная реализация динамической ядерной поляризации, в ходе которой тысячи ядерных спинов были синхронизированы таким образом, что их взаимодействия с электронами взаимно компенсировались. Это состояние получило название «тёмное», поскольку электрон становится «невидимым» для окружающих ядерных спинов.

Эксперимент подтвердил теоретические предсказания центральной спиновой модели, согласно которой один спин может взаимодействовать со множеством других спинов, образуя особые квантовые состояния. До сих пор проверка этих предсказаний считалась чрезвычайно сложной задачей.

Особую ценность открытию придаёт использование кремния – широкодоступного материала, уже применяемого в электронной промышленности. Это существенно упрощает потенциальное внедрение технологии в практические квантовые устройства.

Дальнейшие исследования будут направлены на изучение свойств тёмного состояния, его устойчивости к внешним воздействиям и возможности использования в качестве квантовой памяти. Успешное применение этой технологии может значительно повысить эффективность квантовых вычислений за счёт снижения декогеренции и улучшения контроля над квантовой информацией.


Новое на сайте

18590Является ли ИИ-архитектура, имитирующая мозг, недостающим звеном на пути к AGI? 18589Как Operation Endgame нанесла сокрушительный удар по глобальной киберпреступности? 18588Кибервойна на скорости машин: почему защита должна стать автоматической к 2026 году 18587Как одна ошибка в коде открыла для хакеров 54 000 файрволов WatchGuard? 18586Криптовалютный червь: как десятки тысяч фейковых пакетов наводнили npm 18585Портативный звук JBL по рекордно низкой цене 18584Воин-крокодил триаса: находка в Бразилии связала континенты 18583Опиум как повседневность древнего Египта 18582Двойной удар по лекарственно-устойчивой малярии 18581Почему взрыв массивной звезды асимметричен в первые мгновения? 18580Почему самые удобные для поиска жизни звезды оказались наиболее враждебными? 18579Смертоносные вспышки красных карликов угрожают обитаемым мирам 18578Почему самый активный подводный вулкан тихого океана заставил ученых пересмотреть дату... 18577Вспышка на солнце сорвала запуск ракеты New Glenn к Марсу 18576Как фишинг-платформа Lighthouse заработала миллиард долларов и почему Google подала на...