Ssylka

MoE: как экспертные сети экономят ресурсы в больших языковых моделях?

Архитектура Mixture of Experts (MoE) представляет собой подход к построению больших языковых моделей, который позволяет значительно снизить вычислительные затраты. Вместо обработки каждого входного токена всеми слоями нейронной сети, MoE разделяет модель на несколько «экспертов», каждый из которых специализируется на определенной области.
MoE: как экспертные сети экономят ресурсы в больших языковых моделях?
Изображение носит иллюстративный характер

Ключевым элементом MoE является «проверяющая» модель, которая определяет, к каким экспертам следует обратиться для решения конкретной задачи. Эта модель анализирует входные данные и выбирает наиболее подходящих экспертов, ответы которых затем объединяются для формирования окончательного ответа.

Sparse MoE дополнительно оптимизирует этот процесс, отключая неиспользуемых экспертов. Вместо того чтобы вычислять ответы всех экспертов, sparse MoE активирует только небольшую группу наиболее релевантных, что значительно снижает вычислительные затраты.

Такой подход позволяет создавать модели с огромным количеством параметров, требующих при этом сравнительно небольших вычислительных мощностей. Это открывает возможности для разработки более мощных и эффективных языковых моделей, доступных для широкого круга пользователей.


Новое на сайте

19019Действительно ли «зомби-клетки» провоцируют самую распространенную форму эпилепсии и... 19018Генетический анализ мумий гепардов из саудовской Аравии открыл путь к возрождению... 19017Вредоносная кампания в Chrome перехватывает управление HR-системами и блокирует... 19016Глубоководные оползни раскрыли историю мегаземлетрясений зоны Каскадия за 7500 лет 19015Насколько глубоки ваши познания об эволюции и происхождении человека? 19014Как уязвимость CodeBreach в AWS CodeBuild могла привести к глобальной атаке через ошибку... 19013Затерянный фрагмент древней плиты пионер меняет карту сейсмических угроз Калифорнии 19012Генетические мутации вызывают слепоту менее чем в 30% случаев вопреки прежним прогнозам 19011Завершено строительство космического телескопа Nancy Grace Roman для поиска ста тысяч... 19010Вязкость пространства и фононы вакуума как разгадка аномалий расширения вселенной 19009Приведет ли массовое плодоношение дерева Риму к рекордному росту популяции какапо? 19008Как уязвимость CVE-2026-23550 в плагине Modular DS позволяет захватить управление сайтом? 19007Может ли уличная драка французского авантюриста раскрыть кризис американского гражданства... 19006Может ли один клик по легитимной ссылке заставить Microsoft Copilot и другие ИИ тайно... 19005Утрата истинного мастерства в эпоху алгоритмов и скрытые механизмы человеческого...