Архитектура Mixture of Experts (MoE) представляет собой подход к построению больших языковых моделей, который позволяет значительно снизить вычислительные затраты. Вместо обработки каждого входного токена всеми слоями нейронной сети, MoE разделяет модель на несколько «экспертов», каждый из которых специализируется на определенной области.
Ключевым элементом MoE является «проверяющая» модель, которая определяет, к каким экспертам следует обратиться для решения конкретной задачи. Эта модель анализирует входные данные и выбирает наиболее подходящих экспертов, ответы которых затем объединяются для формирования окончательного ответа.
Sparse MoE дополнительно оптимизирует этот процесс, отключая неиспользуемых экспертов. Вместо того чтобы вычислять ответы всех экспертов, sparse MoE активирует только небольшую группу наиболее релевантных, что значительно снижает вычислительные затраты.
Такой подход позволяет создавать модели с огромным количеством параметров, требующих при этом сравнительно небольших вычислительных мощностей. Это открывает возможности для разработки более мощных и эффективных языковых моделей, доступных для широкого круга пользователей.
Изображение носит иллюстративный характер
Ключевым элементом MoE является «проверяющая» модель, которая определяет, к каким экспертам следует обратиться для решения конкретной задачи. Эта модель анализирует входные данные и выбирает наиболее подходящих экспертов, ответы которых затем объединяются для формирования окончательного ответа.
Sparse MoE дополнительно оптимизирует этот процесс, отключая неиспользуемых экспертов. Вместо того чтобы вычислять ответы всех экспертов, sparse MoE активирует только небольшую группу наиболее релевантных, что значительно снижает вычислительные затраты.
Такой подход позволяет создавать модели с огромным количеством параметров, требующих при этом сравнительно небольших вычислительных мощностей. Это открывает возможности для разработки более мощных и эффективных языковых моделей, доступных для широкого круга пользователей.