Ssylka

Способны ли наноламинаты из высокоэнтропийных сплавов решить проблемы ядерной энергетики?

В ядерной энергетике и других областях, связанных с экстремальными условиями, ключевую роль играют материалы, способные выдерживать интенсивное радиационное воздействие. Традиционные материалы часто сталкиваются с серьезными проблемами, такими как радиационное распухание, охрупчивание и потеря прочности, что в конечном итоге приводит к их разрушению и ограничивает эффективность и безопасность ядерных технологий.
Способны ли наноламинаты из высокоэнтропийных сплавов решить проблемы ядерной энергетики?
Изображение носит иллюстративный характер

Высокоэнтропийные сплавы (ВЭС), благодаря своей сложной химической структуре и искаженной кристаллической решетке, демонстрируют замечательные свойства, включая высокую прочность, устойчивость к коррозии, радиационную толерантность и термическую стабильность. Однако даже ВЭС не лишены недостатков: в экстремальных условиях радиационного воздействия в них может происходить кластеризация дефектов, что снижает их эксплуатационные характеристики.

Металлические стекла (МС), в свою очередь, отличаются аморфной структурой, лишенной кристаллографических дефектов, что обеспечивает им высокую устойчивость к радиационному повреждению частицами. Тем не менее, МС обладают ограниченной пластичностью при экстремальных нагрузках, что препятствует их самостоятельному применению в условиях, требующих высокой структурной надежности.

Для решения этих проблем группа ученых из Института материаловедения имени Эриха Шмида при Австрийской академии наук разработала инновационный подход, основанный на использовании высокоэнтропийных кристаллических и аморфных наноламинатов (HECA). Суть подхода заключается в создании материалов с архитектурой, которая оптимально сочетает в себе преимущества ВЭС и МС, минимизируя при этом их недостатки.

HECA-наноламинаты представляют собой двухфазную структуру, состоящую из чередующихся пластин кристаллического высокоэнтропийного сплава (ВЭС) и аморфного металлического стекла (МС). Ключевым элементом конструкции является межфазная инженерия, направленная на использование синергетического эффекта и взаимодействия между кристаллическими и аморфными слоями на наноуровне.

Особая роль в HECA-наноламинатах отводится границам раздела между кристаллическими и аморфными слоями. Эти границы действуют как «ловушки» для радиационных дефектов, эффективно захватывая их и способствуя их аннигиляции. Таким образом, межфазные границы ускоряют процесс устранения дефектов, минимизируя структурные повреждения материала под воздействием радиации.

Результаты молекулярно-динамического моделирования, проведенного исследователями, подтвердили эффективность предложенного механизма. Было установлено, что межфазные границы активно захватывают радиационные дефекты межузельного типа, в то время как вакансии преимущественно рекомбинируют в объеме кристаллической фазы. Такое разделение и перераспределение дефектов способствует снижению их распространения и накопления, обеспечивая синергетическое взаимодействие между интерфейсом и дефектами.

Более того, исследования показали, что в процессе радиационного воздействия кристаллическая фаза ВЭС стимулирует кристаллизацию аморфной фазы МС вблизи межфазной границы. Этот процесс кристаллизации способствует повышению структурной стабильности материала и дополнительно усиливает его устойчивость к радиационному повреждению.

Наблюдается также перераспределение свободного объема в аморфной фазе МС, что минимизирует радиационное распухание материала. Сочетание всех этих механизмов приводит к значительному повышению радиационной стойкости HECA-наноламинатов по сравнению с традиционными материалами и даже с отдельными компонентами – ВЭС и МС.

Разработка HECA-наноламинатов открывает новые горизонты в создании перспективных материалов для ядерной энергетики и других экстремальных применений. Этот подход позволяет целенаправленно проектировать радиационно-стойкие материалы с заданными свойствами, адаптированными к конкретным условиям эксплуатации.

Потенциальные области применения HECA-наноламинатов не ограничиваются ядерной энергетикой. Благодаря своим уникальным свойствам, они могут быть востребованы в аэрокосмической промышленности и передовой электронике, где материалы также подвергаются воздействию экстремальных условий. Данная разработка устанавливает новую планку для высокоэффективных материалов, предназначенных для использования в ядерной энергетике и аэрокосмической отрасли. Результаты исследования были опубликованы в журнале Materials Futures.

В дальнейшем исследования будут направлены на углубленное изучение атомно-масштабной структуры HECA-наноламинатов, всестороннее исследование их свойств и сочетание экспериментальных исследований с компьютерным моделированием. Также планируется расширить область применения этих материалов, снизить их стоимость производства и усовершенствовать технологии межфазной инженерии для повышения их промышленной жизнеспособности.


Новое на сайте

16950Физический движок в голове: как мозг разделяет твердые предметы и текучие вещества 16949Скрыты ли в нашей днк ключи к лечению ожирения и последствий инсульта? 16948Почему символ американской свободы был приговорен к уничтожению? 16947Рукотворное убежище для исчезающих амфибий 16946Какую тайну хранит жестокая жизнь и загадочная смерть сестер каменного века? 16945Скрывает ли Плутон экваториальный пояс из гигантских ледяных клинков? 16944Взгляд на зарю вселенной телескопом Джеймса Уэбба 16943От сада чудес до протеина из атмосферы 16942Кратковременный сон наяву: научное объяснение пустоты в мыслях 16941Спутники Starlink создают непреднамеренную угрозу для радиоастрономии 16940Аутентификационная чума: бэкдор Plague год оставался невидимым 16939Фиолетовый страж тайских лесов: редкий краб-принцесса явился миру 16938Хроники мангровых лесов: победители фотоконкурса 2025 года 16937Танцевали ли планеты солнечной системы идеальный вальс? 16936Ай-ай: причудливый лемур, проклятый своим пальцем